Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -49,11 +49,11 @@ AddDerivationToCAP( InternalHomOnMorphismsWithGivenInternalHoms,
# |
# |
# v
# a'^v ⊗ b
# b ⊗ a'^v
# |
# | Dual(alpha) ⊗ beta
# | beta ⊗ Dual(alpha)
# v
# a^vb'
# b'a^v
# |
# |
# v
Expand All @@ -64,7 +64,7 @@ AddDerivationToCAP( InternalHomOnMorphismsWithGivenInternalHoms,
return PreComposeList( cat,
internal_hom_source,
[ IsomorphismFromInternalHomToTensorProductWithDualObject( cat, Range( alpha ), Source( beta ) ),
TensorProductOnMorphisms( cat, dual_alpha, beta ),
TensorProductOnMorphisms( cat, beta, dual_alpha ),
IsomorphismFromTensorProductWithDualObjectToInternalHom( cat, Source( alpha ), Range( beta ) ) ],
internal_hom_range );

Expand Down Expand Up @@ -102,11 +102,10 @@ end : CategoryFilter := IsRigidSymmetricClosedMonoidalCategory );
AddDerivationToCAP( EvaluationMorphismWithGivenSource,
"EvaluationMorphismWithGivenSource using the rigidity of the monoidal category",
[ [ PreComposeList, 1 ],
[ TensorProductOnMorphisms, 3 ],
[ TensorProductOnMorphisms, 2 ],
[ IsomorphismFromInternalHomToTensorProductWithDualObject, 1 ],
[ IdentityMorphism, 3 ],
[ Braiding, 1 ],
[ DualOnObjects, 2 ],
[ IdentityMorphism, 2 ],
[ DualOnObjects, 1 ],
[ AssociatorLeftToRight, 1 ],
[ EvaluationForDual, 1 ],
[ RightUnitor, 1 ] ],
Expand All @@ -118,10 +117,6 @@ AddDerivationToCAP( EvaluationMorphismWithGivenSource,
# |
# | Isomorphism ⊗ id_a
# v
# (a^v ⊗ b) ⊗ a
# |
# | B_( Dual(a), b ) ⊗ id_a
# v
# (b ⊗ a^v) ⊗ a
# |
# | α_( ( b, a^v ), a )
Expand All @@ -142,9 +137,6 @@ AddDerivationToCAP( EvaluationMorphismWithGivenSource,
IsomorphismFromInternalHomToTensorProductWithDualObject( cat, a, b ),
IdentityMorphism( cat, a ) ),

TensorProductOnMorphisms( cat,
Braiding( cat, DualOnObjects( cat, a ), b ),
IdentityMorphism( cat, a ) ),
AssociatorLeftToRight( cat, b, DualOnObjects( cat, a ), a ),

TensorProductOnMorphisms( cat,
Expand All @@ -162,11 +154,9 @@ end : CategoryFilter := IsRigidSymmetricClosedMonoidalCategory );
AddDerivationToCAP( EvaluationMorphismWithGivenSource,
"EvaluationMorphismWithGivenSource using the rigidity and strictness of the monoidal category",
[ [ PreComposeList, 1 ],
[ TensorProductOnMorphisms, 3 ],
[ TensorProductOnMorphisms, 2 ],
[ IsomorphismFromInternalHomToTensorProductWithDualObject, 1 ],
[ IdentityMorphism, 3 ],
[ Braiding, 1 ],
[ DualOnObjects, 1 ],
[ IdentityMorphism, 2 ],
[ EvaluationForDual, 1 ] ],

function( cat, a, b, internal_hom_tensored_a )
Expand All @@ -176,10 +166,6 @@ AddDerivationToCAP( EvaluationMorphismWithGivenSource,
# |
# | Isomorphism ⊗ id_a
# v
# a^v ⊗ b ⊗ a
# |
# | B_( Dual(a), b ) ⊗ id_a
# v
# b ⊗ a^v ⊗ a
# |
# | id_b ⊗ ev_a
Expand All @@ -192,10 +178,6 @@ AddDerivationToCAP( EvaluationMorphismWithGivenSource,
IsomorphismFromInternalHomToTensorProductWithDualObject( cat, a, b ),
IdentityMorphism( cat, a ) ),

TensorProductOnMorphisms( cat,
Braiding( cat, DualOnObjects( cat, a ), b ),
IdentityMorphism( cat, a ) ),

TensorProductOnMorphisms( cat,
IdentityMorphism( cat, b ),
EvaluationForDual( cat, a ) ) ],
Expand All @@ -209,13 +191,12 @@ end : CategoryFilter := cat -> HasIsRigidSymmetricClosedMonoidalCategory( cat )
AddDerivationToCAP( CoevaluationMorphismWithGivenRange,
"CoevaluationMorphismWithGivenRange using the rigidity of the monoidal category",
[ [ DualOnObjects, 1 ],
[ IdentityMorphism, 2 ],
[ IdentityMorphism, 1 ],
[ PreComposeList, 1 ],
[ LeftUnitorInverse, 1 ],
[ TensorProductOnMorphisms, 3 ],
[ RightUnitorInverse, 1 ],
[ TensorProductOnMorphisms, 1 ],
[ CoevaluationForDual, 1 ],
[ Braiding, 2 ],
[ AssociatorLeftToRight, 1 ],
[ AssociatorRightToLeft, 1 ],
[ IsomorphismFromTensorProductWithDualObjectToInternalHom, 1 ],
[ TensorProductOnObjects, 1 ] ],

Expand All @@ -224,25 +205,17 @@ AddDerivationToCAP( CoevaluationMorphismWithGivenRange,

# a
# |
# | (λ_a)^-1
# v
# 1 ⊗ a
# |
# | coev_b ⊗ id_a
# v
# (b ⊗ b^v) ⊗ a
# |
# | B_( b, b^v ) ⊗ id_a
# | (ρ_a)^-1
# v
# (b^v ⊗ b) ⊗ a
# a ⊗ 1
# |
# | α_( ( b^v, b ), a )
# | id_a ⊗ coev_b
# v
# b^v ⊗ (b ⊗ a)
# a ⊗ (b ⊗ b^v)
# |
# | id_(b^v) ⊗ B_( b, a )
# | α_( a, ( b, b^v ) )
# v
# b^v ⊗ (a ⊗ b)
# (a ⊗ b) ⊗ b^v
# |
# | Isomorphism
# v
Expand All @@ -254,21 +227,13 @@ AddDerivationToCAP( CoevaluationMorphismWithGivenRange,

morphism := PreComposeList( cat,
a,
[ LeftUnitorInverse( cat, a ),

TensorProductOnMorphisms( cat,
CoevaluationForDual( cat, b ),
id_a ),
[ RightUnitorInverse( cat, a ),

TensorProductOnMorphisms( cat,
Braiding( cat, b, dual_b ),
id_a ),

AssociatorLeftToRight( cat, dual_b, b, a ),
id_a,
CoevaluationForDual( cat, b ) ),

TensorProductOnMorphisms( cat,
IdentityMorphism( cat, dual_b ),
Braiding( cat, b, a ) ),
AssociatorRightToLeft( cat, a, b, dual_b ),

IsomorphismFromTensorProductWithDualObjectToInternalHom( cat,
b,
Expand All @@ -283,33 +248,24 @@ end : CategoryFilter := IsRigidSymmetricClosedMonoidalCategory );
AddDerivationToCAP( CoevaluationMorphismWithGivenRange,
"CoevaluationMorphismWithGivenRange using the rigidity of the monoidal category",
[ [ DualOnObjects, 1 ],
[ IdentityMorphism, 2 ],
[ IdentityMorphism, 1 ],
[ PreComposeList, 1 ],
[ TensorProductOnMorphisms, 3 ],
[ TensorProductOnMorphisms, 1 ],
[ CoevaluationForDual, 1 ],
[ Braiding, 2 ],
[ IsomorphismFromTensorProductWithDualObjectToInternalHom, 1 ],
[ TensorProductOnObjects, 1 ] ],

function( cat, a, b, internal_hom )
local dual_b, id_a, morphism;

# 1 ⊗ a
# |
# | coev_b ⊗ id_a
# v
# b ⊗ b^v ⊗ a
# |
# | B_( b, b^v ) ⊗ id_a
# v
# b^v ⊗ b ⊗ a
# |
# | id_(b^v) ⊗ B_( b, a )
# v
# b^v ⊗ a ⊗ b
# |
# | Isomorphism
# v
# a
# |
# | id_a ⊗ coev_b
# v
# (a ⊗ b) ⊗ b^v
# |
# | Isomorphism
# v
# Hom(b, a ⊗ b)

dual_b := DualOnObjects( cat, b );
Expand All @@ -319,16 +275,8 @@ AddDerivationToCAP( CoevaluationMorphismWithGivenRange,
morphism := PreComposeList( cat,
a,
[ TensorProductOnMorphisms( cat,
CoevaluationForDual( cat, b ),
id_a ),

TensorProductOnMorphisms( cat,
Braiding( cat, b, dual_b ),
id_a ),

TensorProductOnMorphisms( cat,
IdentityMorphism( cat, dual_b ),
Braiding( cat, b, a ) ),
id_a,
CoevaluationForDual( cat, b ) ),

IsomorphismFromTensorProductWithDualObjectToInternalHom( cat,
b,
Expand Down Expand Up @@ -388,6 +336,8 @@ AddDerivationToCAP( MorphismFromInternalHomToTensorProductWithGivenObjects,
"MorphismFromInternalHomToTensorProductWithGivenObjects using TensorProductInternalHomCompatibilityMorphismInverse",
[ [ TensorUnit, 1 ],
[ PostComposeList, 1 ],
[ Braiding, 1 ],
[ DualOnObjects, 1 ],
[ TensorProductOnMorphisms, 1 ],
[ IsomorphismFromInternalHomIntoTensorUnitToDualObject, 1 ],
[ IsomorphismFromInternalHomToObject, 1 ],
Expand All @@ -401,6 +351,10 @@ AddDerivationToCAP( MorphismFromInternalHomToTensorProductWithGivenObjects,

# inverse of the derivation of MorphismFromTensorProductToInternalHomWithGivenObjects using TensorProductInternalHomCompatibilityMorphism

# b ⊗ a^v
# ʌ
# | B_( a^v, b )
# |
# a^v ⊗ b
# ʌ
# |
Expand All @@ -417,6 +371,8 @@ AddDerivationToCAP( MorphismFromInternalHomToTensorProductWithGivenObjects,
unit := TensorUnit( cat );

return PostComposeList( cat, [
Braiding( cat, DualOnObjects( cat, a ), b ),

TensorProductOnMorphisms( cat,
IsomorphismFromInternalHomIntoTensorUnitToDualObject( cat, a ),
IsomorphismFromInternalHomToObject( cat, b ) ),
Expand All @@ -437,9 +393,7 @@ AddDerivationToCAP( CoevaluationForDualWithGivenTensorProduct,
[ [ IdentityMorphism, 1 ],
[ PreComposeList, 1 ],
[ LambdaIntroduction, 1 ],
[ IsomorphismFromInternalHomToTensorProductWithDualObject, 1 ],
[ Braiding, 1 ],
[ DualOnObjects, 1 ] ],
[ IsomorphismFromInternalHomToTensorProductWithDualObject, 1 ] ],

function( cat, unit, a, tensor_object )
local morphism;
Expand All @@ -452,19 +406,14 @@ AddDerivationToCAP( CoevaluationForDualWithGivenTensorProduct,
# |
# | Isomorphism
# v
# a^v ⊗ a
# |
# | B_( a^v, a )
# v
# a ⊗ a^v

morphism := IdentityMorphism( cat, a );

morphism := PreComposeList( cat,
unit,
[ LambdaIntroduction( cat, morphism ),
IsomorphismFromInternalHomToTensorProductWithDualObject( cat, a, a ),
Braiding( cat, DualOnObjects( cat, a ), a ) ],
IsomorphismFromInternalHomToTensorProductWithDualObject( cat, a, a ) ],
tensor_object );

return morphism;
Expand All @@ -478,6 +427,8 @@ AddDerivationToCAP( TraceMap,
[ PreComposeList, 1 ],
[ LambdaIntroduction, 1 ],
[ IsomorphismFromInternalHomToTensorProductWithDualObject, 1 ],
[ Braiding, 1 ],
[ DualOnObjects, 1 ],
[ EvaluationForDual, 1 ] ],

function( cat, alpha )
Expand All @@ -493,6 +444,10 @@ AddDerivationToCAP( TraceMap,
# |
# | Isomorphism
# v
# a ⊗ a^v
# |
# | B_( a, a^v )
# v
# a^v ⊗ a
# |
# | ev_a
Expand All @@ -507,6 +462,7 @@ AddDerivationToCAP( TraceMap,
unit,
[ LambdaIntroduction( cat, alpha ),
IsomorphismFromInternalHomToTensorProductWithDualObject( cat, a, a ),
Braiding( cat, a, DualOnObjects( a ) ),
EvaluationForDual( cat, a ) ],
unit );

Expand Down Expand Up @@ -612,8 +568,8 @@ end : CategoryFilter := IsRigidSymmetricClosedMonoidalCategory );
AddFinalDerivationBundle( "deriving the internal hom by tensoring with the dual object",
[ [ IdentityMorphism, 1 ],
[ DualOnObjects, 1 ],
[ RightUnitor, 1 ],
[ RightUnitorInverse, 1 ],
[ LeftUnitor, 1 ],
[ LeftUnitorInverse, 1 ],
[ TensorProductOnObjects, 1 ] ],
[ InternalHomOnObjects,
InternalHomOnMorphismsWithGivenInternalHoms,
Expand All @@ -639,7 +595,7 @@ AddFinalDerivationBundle( "deriving the internal hom by tensoring with the dual
[ DualOnObjects, 1 ] ],
function( cat, a, b )

return IdentityMorphism( cat, TensorProductOnObjects( cat, DualOnObjects( cat, a ), b ) );
return IdentityMorphism( cat, TensorProductOnObjects( cat, b, DualOnObjects( cat, a ) ) );

end
],
Expand All @@ -650,27 +606,27 @@ AddFinalDerivationBundle( "deriving the internal hom by tensoring with the dual
[ DualOnObjects, 1 ] ],
function( cat, a, b )

return IdentityMorphism( cat, TensorProductOnObjects( cat, DualOnObjects( cat, a ), b ) );
return IdentityMorphism( cat, TensorProductOnObjects( cat, b, DualOnObjects( cat, a ) ) );

end
],
[
IsomorphismFromInternalHomIntoTensorUnitToDualObject,
[ [ RightUnitor, 1 ],
[ [ LeftUnitor, 1 ],
[ DualOnObjects, 1 ] ],
function( cat, object )

return RightUnitor( cat, DualOnObjects( cat, object ) );
return LeftUnitor( cat, DualOnObjects( cat, object ) );

end
],
[
IsomorphismFromDualObjectToInternalHomIntoTensorUnit,
[ [ RightUnitorInverse, 1 ],
[ [ LeftUnitorInverse, 1 ],
[ DualOnObjects, 1 ] ],
function( cat, object )

return RightUnitorInverse( cat, DualOnObjects( cat, object ) );
return LeftUnitorInverse( cat, DualOnObjects( cat, object ) );

end
] : CategoryFilter := IsRigidSymmetricClosedMonoidalCategory );
Loading