A sophisticated real-time ad auction bidding system with Python and Java implementations.
Adobe DevCraft Bidding System is a comprehensive solution for real-time ad auctions, featuring machine learning integration, efficient lookup systems, and robust data processing capabilities. The system is designed for optimal bidding decisions in high-frequency advertising environments.
Install dependencies using pip:
pip install -r requirements.txtOr install using the setup script:
python setup.py installSet up a conda environment:
# If using conda
conda env create -f environment.yamlcd Adobe_Devcraft_PS/bidder/python
python3 Bid.pyAdobe_Devcraft_PS/bidder/python/model_parameters/epoch3_iter_0_train_5.467432975769043
- Smart Bidding Algorithm: ML-powered bidding strategies optimized for ROI
- Data Processing Pipeline: Comprehensive tools for data preparation and transformation
- Machine Learning Integration: Deep learning models for bid optimization
- Visualization Tools: Built-in capabilities for data analysis and visualization
- Efficient Lookup System: Fast bidding decisions through optimized lookup tables
ADOBE DEVCRAFT/
├── Adobe_Devcraft_PS/
│ ├── bidder/
│ │ └── python/
│ │ ├── __pycache__/
│ │ ├── Code/
│ │ ├── model_parameters/
│ │ ├── advertiser_id.json
│ │ ├── Bid.py
│ │ ├── Bidder.py
│ │ ├── BidRequest.py
│ │ ├── city.txt
│ │ ├── profile.json
│ │ ├── region.txt
│ │ ├── __init__.py
│ │ └── city.txt
│ ├── README
│ ├── region.txt
│ └── user.profile.tags.txt
├── .gitignore
├── environment.yml
├── INSTRUCTION.md
├── requirements.txt
└── setup.py
| File | Description |
|---|---|
city.txt |
City-wise mapping information |
region.txt |
Regional classification data |
user.profile.tags.txt |
Detailed user profiling information |
- train.py: Neural network training pipeline
- model.py: Deep learning model architecture
- loss.py: Custom loss functions for model optimization
- create_look_up.py: Lookup table generation for efficient bidding
- histograms_and_box.py: Statistical analysis and visualization tools
For detailed implementation guidance, refer to the files in the Code directory and the instructions in INSTRUCTION.md.
- Python 3.7+
- Dependencies listed in requirements.txt
- Optional: Conda environment manager