Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions automatic_prompt_engineer/ape.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@ def simple_ape(dataset,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
prompt_gen_template=None,
demos_template='Input: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50,
eval_rounds=20,
Expand Down Expand Up @@ -60,7 +60,7 @@ def simple_eval(dataset,
prompts,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
demos_template='Input: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
num_samples=50):
"""
Function that wraps the evaluate_prompts function to make it easier to use.
Expand All @@ -87,8 +87,8 @@ def simple_estimate_cost(dataset,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
prompt_gen_template=None,
demos_template='Input: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50,
eval_rounds=20,
Expand Down
36 changes: 18 additions & 18 deletions demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from automatic_prompt_engineer.ape import get_simple_prompt_gen_template
from automatic_prompt_engineer import ape, evaluate, config, template, llm

model_types = ['text-ada-001', 'text-babbage-001', 'text-curie-001', 'text-davinci-002']
model_types = ['text-ada-001', 'text-babbage-001', 'text-curie-001', 'gpt-3.5-turbo-instruct']
mode_types = ['forward', 'insert']
eval_types = ['likelihood', 'bandits']
task_types = ['antonyms', 'cause_and_effect', 'common_concept', 'diff', 'first_word_letter',
Expand Down Expand Up @@ -59,8 +59,8 @@ def run_ape(prompt_gen_data, eval_data,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
prompt_gen_template=None,
demos_template='Input: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500, # basic
num_subsamples=None, num_demos=None, # advanced
Expand Down Expand Up @@ -141,8 +141,8 @@ def run_ape(prompt_gen_data, eval_data,

def basic_ape(prompt_gen_data, eval_data,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500):
return run_ape(prompt_gen_data, eval_data, eval_template,
Expand All @@ -153,8 +153,8 @@ def basic_ape(prompt_gen_data, eval_data,

def advance_ape(prompt_gen_data, eval_data,
eval_template, prompt_gen_template, demos_template,
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500, # basic
num_subsamples=None, num_demos=None, # advanced
Expand All @@ -175,8 +175,8 @@ def estimate_cost(prompt_gen_data, eval_data,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
prompt_gen_template=None,
demos_template='Input: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500, # basic
num_subsamples=None, num_demos=None, # advanced
Expand Down Expand Up @@ -251,8 +251,8 @@ def estimate_cost(prompt_gen_data, eval_data,
def basic_estimate_cost(prompt_gen_data,
eval_data,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500):
return estimate_cost(prompt_gen_data, eval_data, eval_template,
Expand All @@ -263,8 +263,8 @@ def basic_estimate_cost(prompt_gen_data,

def advance_estimate_cost(prompt_gen_data, eval_data,
eval_template, prompt_gen_template, demos_template,
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500, # basic
num_subsamples=None, num_demos=None, # advanced
num_samples=None, num_few_shot=None # advanced
Expand All @@ -285,7 +285,7 @@ def compute_score(prompt,
eval_data,
eval_template,
demos_template,
eval_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
num_few_shot=None # advanced
):
eval_data = parse_data(eval_data)
Expand All @@ -302,8 +302,8 @@ def compute_score(prompt,

def run_prompt(prompt, inputs,
eval_template='Instruction: [PROMPT]\nInput: [INPUT]\nOutput: [OUTPUT]',
eval_model='text-davinci-002',
prompt_gen_model='text-davinci-002',
eval_model='gpt-3.5-turbo-instruct',
prompt_gen_model='gpt-3.5-turbo-instruct',
prompt_gen_mode='forward',
num_prompts=50, eval_rounds=10, prompt_gen_batch_size=200, eval_batch_size=500):
conf = config.simple_config(
Expand Down Expand Up @@ -381,10 +381,10 @@ def get_demo():
with gr.Tab("Basic"):
with gr.Row():
prompt_gen_model = gr.Dropdown(label="Prompt Generation Model", choices=model_types,
value="text-davinci-002")
value="gpt-3.5-turbo-instruct")

eval_model = gr.Dropdown(label="Evaluation Model", choices=model_types,
value="text-davinci-002")
value="gpt-3.5-turbo-instruct")

with gr.Row():
num_prompts = gr.Slider(label="Number of Prompts", minimum=1, maximum=250, step=10, value=50)
Expand Down