We are developing it with reference to [Detecting Invisible People] & [MegaDepth] & [Deep Sort]
The code skeleton is based on "https://github.com/tarashakhurana/detecting-invisible-people"
- create a conda environment (name : deepsort)
conda env create -f detecting-invisible-people/environment.yml- The code expects the directory structure of your dataset in the MOT17 data format
MOT17/
-- train/
---- seq_01/
------ img1/ /* necessary */
------ img1Depth/ /* Can generate by using MegaDepth */
------ gt/gt.txt /* necessary */
------ det/det.txt /* necessary */
------ seqinfo.ini
...
-- test/
---- seq_02/
------ img1/ /* necessary */
------ img1Depth/ /* Can generate by using MegaDepth */
------ det/det.txt /* necessary */
------ seqinfo.ini
...
resources/
-- detections/
---- seq_01.npy /* Can generate by using ./tools/generate_detection.py */
-- networks/
---- mars_###.pb /* Can generate by using cosine_metric_learning */
-
If you want to use custom datasets, see below for references.
-
seqinfo.ini
[Sequence] name=MOT17-02-FRCNN /* Name of dataset directory */ imDir=img1 /* Name of Imageset directory, It's better to fix 'img1' */ frameRate=30 seqLength=600 /* Number of frame */ imWidth=1920 imHeight=1080 imExt=.jpg -
Form of Imageset
image name : 6 digit frame number starting with 1 e.g.) 000001.jpg ~ 000600.jpg
-
Part of the gt.txt in MOT17
599,51,910,408,26,129,0,9,0.046154 600,51,910,408,26,129,0,9,0.046154 1,52,730,509,37,60,0,4,0.92105 2,52,730,509,37,60,0,4,0.94737The gt.txt format (Each line must contain 9 values)

Part of the det.txt in MOT17
436,-1,696.2,429.5,72.8,285.6,0.996 436,-1,528.8,466.7,24.2,71.6,0.306 294,-1,752.6,445,65.1,198,1 294,-1,1517.6,430.2,241.1,461.2,1The det.txt format (Each line must contain 7 values)
frame id, default(-1), x, y, width, height, confidence score -
Using ./tools/generate_detection.py
python tools/generate_detections.py \ --model=resources/networks/mars-0000.pb \ --mot_dir=./MOT17/train \ --output_dir=./resources/detections/MOT17_traingenerate mars-0000.pb by using Cosine Metric Learning
-
Using megadepth, Fix the lines 134 in MegaDepth/demo_images_new.py
images = sorted(glob.glob( " path of img1/*.jpg " ))Generate image_depth sets
python MegaDepth/demo_images_new.py
-
bash run_forecast_filtering.sh
-
pretrained model in here
- prepare the gt.txt & image sets
file format : [#ID][#tracklets][#bboxes][#distractors][#caml./ID]
folder format : object classfile info : extracted bbox_images
By using the makedet.py, we can extract datasets from image sets