@@ -11224,9 +11224,8 @@ This definition (in the form of ~ dfifp2 ) appears in Section II.24 of
1122411224  $( Rearrangement of 6 conjuncts.  (Contributed by NM, 13-Mar-1995.) $)
1122511225  an6 $p |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <->
1122611226              ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) ) $=
11227-     ( wa w3a an4 anbi1i bitri df-3an anbi12i 3bitr4i ) ABGZCGZDEGZFGZGZADGZBEGZ
11228-     GZCFGZGZABCHZDEFHZGTUAUCHSOQGZUCGUDOCQFIUGUBUCABDEIJKUEPUFRABCLDEFLMTUAUCLN
11229-     $.
11227+     ( wa w3a an4 bianbi df-3an anbi12i 3bitr4i ) ABGZCGZDEGZFGZGZADGZBEGZGZCFGZ
11228+     GABCHZDEFHZGSTUBHRNPGUBUANCPFIABDEIJUCOUDQABCKDEFKLSTUBKM $.
1123011229
1123111230  $( Analogue of ~ an4 for triple conjunction.  (Contributed by Scott Fenton,
1123211231     16-Mar-2011.)  (Proof shortened by Andrew Salmon, 25-May-2011.) $)
@@ -11484,8 +11483,8 @@ This definition (in the form of ~ dfifp2 ) appears in Section II.24 of
1148411483    $( Deduction for elimination by cases.  (Contributed by NM,
1148511484       22-Apr-1994.) $)
1148611485    ecase23d $p |- ( ph -> ps ) $=
11487-       ( wo wn ioran sylanbrc  w3o 3orass sylib ord mt3d ) ABCDHZACIDIQIEFCDJKABQ 
11488-       ABCDLBQHGBCDMNOP  $.
11486+       ( wo w3o 3orass sylib wn ioran sylanbrc olcnd ) ABCDHZABCDIBPHGBCDJKACLDL 
11487+       PLEFCDMNO  $.
1148911488  $}
1149011489
1149111490  ${
@@ -11922,7 +11921,7 @@ Principia Mathematica (1927), Russell and Whitehead used the Sheffer
1192211921  $( This lemma specializes ~ biimt suitably for the proof of ~ norass .
1192311922     (Contributed by Wolf Lammen, 18-Dec-2023.) $)
1192411923  norasslem2 $p |- ( ph -> ( ps <-> ( ( ph \/ ch ) -> ps ) ) ) $=
11925-     ( wo wi wb orc  biimt syl  ) AACDZBJBEFACGJBHI  $.
11924+     ( wo wi wb biimt orcs  ) ACBACDZBEFIBGH  $.
1192611925
1192711926  $( This lemma specializes ~ biorf suitably for the proof of ~ norass .
1192811927     (Contributed by Wolf Lammen, 18-Dec-2023.) $)
0 commit comments