Skip to content

Commit cecfd92

Browse files
Minimize propositional calculus theorems (#5081)
1 parent 2688803 commit cecfd92

File tree

1 file changed

+5
-6
lines changed

1 file changed

+5
-6
lines changed

set.mm

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -11224,9 +11224,8 @@ This definition (in the form of ~ dfifp2 ) appears in Section II.24 of
1122411224
$( Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) $)
1122511225
an6 $p |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <->
1122611226
( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) ) $=
11227-
( wa w3a an4 anbi1i bitri df-3an anbi12i 3bitr4i ) ABGZCGZDEGZFGZGZADGZBEGZ
11228-
GZCFGZGZABCHZDEFHZGTUAUCHSOQGZUCGUDOCQFIUGUBUCABDEIJKUEPUFRABCLDEFLMTUAUCLN
11229-
$.
11227+
( wa w3a an4 bianbi df-3an anbi12i 3bitr4i ) ABGZCGZDEGZFGZGZADGZBEGZGZCFGZ
11228+
GABCHZDEFHZGSTUBHRNPGUBUANCPFIABDEIJUCOUDQABCKDEFKLSTUBKM $.
1123011229

1123111230
$( Analogue of ~ an4 for triple conjunction. (Contributed by Scott Fenton,
1123211231
16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) $)
@@ -11484,8 +11483,8 @@ This definition (in the form of ~ dfifp2 ) appears in Section II.24 of
1148411483
$( Deduction for elimination by cases. (Contributed by NM,
1148511484
22-Apr-1994.) $)
1148611485
ecase23d $p |- ( ph -> ps ) $=
11487-
( wo wn ioran sylanbrc w3o 3orass sylib ord mt3d ) ABCDHZACIDIQIEFCDJKABQ
11488-
ABCDLBQHGBCDMNOP $.
11486+
( wo w3o 3orass sylib wn ioran sylanbrc olcnd ) ABCDHZABCDIBPHGBCDJKACLDL
11487+
PLEFCDMNO $.
1148911488
$}
1149011489

1149111490
${
@@ -11922,7 +11921,7 @@ Principia Mathematica (1927), Russell and Whitehead used the Sheffer
1192211921
$( This lemma specializes ~ biimt suitably for the proof of ~ norass .
1192311922
(Contributed by Wolf Lammen, 18-Dec-2023.) $)
1192411923
norasslem2 $p |- ( ph -> ( ps <-> ( ( ph \/ ch ) -> ps ) ) ) $=
11925-
( wo wi wb orc biimt syl ) AACDZBJBEFACGJBHI $.
11924+
( wo wi wb biimt orcs ) ACBACDZBEFIBGH $.
1192611925

1192711926
$( This lemma specializes ~ biorf suitably for the proof of ~ norass .
1192811927
(Contributed by Wolf Lammen, 18-Dec-2023.) $)

0 commit comments

Comments
 (0)