|
14399 | 14399 | <td>the set.mm proof uses mul0ord</td> |
14400 | 14400 | </tr> |
14401 | 14401 |
|
| 14402 | +<tr> |
| 14403 | + <td>dvnply2 , dvnply</td> |
| 14404 | + <td><i>none</i></td> |
| 14405 | + <td>should be feasible once Dn syntax is defined</td> |
| 14406 | +</tr> |
| 14407 | + |
| 14408 | +<tr> |
| 14409 | + <td>plycpn</td> |
| 14410 | + <td><i>none</i></td> |
| 14411 | + <td>should be feasible once C^n syntax is defined</td> |
| 14412 | +</tr> |
| 14413 | + |
| 14414 | +<tr> |
| 14415 | + <td id="missing-df-quot">df-quot</td> |
| 14416 | + <td><i>none</i></td> |
| 14417 | + <td>there might be issues around comparing to 0p but perhaps |
| 14418 | + even more fundamentally, the definition is saying the |
| 14419 | + degree of the remainder is less than the degree of the divisor |
| 14420 | + and it isn't clear that we can compare degrees like that</td> |
| 14421 | +</tr> |
| 14422 | + |
14402 | 14423 | <tr> |
14403 | 14424 | <td>fta1</td> |
14404 | 14425 | <td><i>none</i></td> |
@@ -15530,9 +15551,13 @@ <h2 style="border-top: 1px solid black; color: #006633; font-weight: bold; margi |
15530 | 15551 | <tr> |
15531 | 15552 | <td>67. <i>e</i> is Transcendental</td> |
15532 | 15553 | <td>There's a lot to develop in terms of polynomials |
15533 | | - and algebraic numbers. Also see <a href="">transcendental |
15534 | | - number</a> at ncatlab concerning how we should |
15535 | | - define transcendental.</td> |
| 15554 | + and algebraic numbers. Also see <a |
| 15555 | + href="https://ncatlab.org/nlab/show/transcendental+number" |
| 15556 | + >transcendental |
| 15557 | + number</a> at nLab concerning how we should |
| 15558 | + define transcendental (probably the best definition |
| 15559 | + is that a transcendental number is one which is apart from |
| 15560 | + any algebraic number).</td> |
15536 | 15561 | </tr> |
15537 | 15562 |
|
15538 | 15563 | <tr> |
@@ -15613,7 +15638,10 @@ <h2 style="border-top: 1px solid black; color: #006633; font-weight: bold; margi |
15613 | 15638 |
|
15614 | 15639 | <tr> |
15615 | 15640 | <td>89. The Factor and Remainder Theorems</td> |
15616 | | - <td>Requires further development of polynomials.</td> |
| 15641 | + <td>The question is whether quotient is well enough defined for |
| 15642 | + these theorems, and/or whether there is a way to state the theorems |
| 15643 | + so they would imply a taboo. Also see the <a href="#missing-df-quot" |
| 15644 | + >df-quot entry</a> above.</td> |
15617 | 15645 | </tr> |
15618 | 15646 |
|
15619 | 15647 | <tr> |
|
0 commit comments