Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
156 changes: 84 additions & 72 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -30175,7 +30175,7 @@ generally appear in a single form (either definitional, but more often
$}

${
$d z A $. $d z B $. $d x y C $. $d x y z $.
$d z A $. $d z B $. $d x C $. $d y C $. $d x z $. $d y z $.
$( Rotate three restricted universal quantifiers. (Contributed by AV,
3-Dec-2021.) $)
ralrot3 $p |- ( A. x e. A A. y e. B A. z e. C ph
Expand All @@ -30185,7 +30185,8 @@ generally appear in a single form (either definitional, but more often
$}

${
$d w z A $. $d w z B $. $d w x y C $. $d x y z D $.
$d w z A $. $d w z B $. $d w x C $. $d w y C $. $d x z D $.
$d y z D $.
$( Rotate four restricted existential quantifiers twice. (Contributed by
NM, 8-Apr-2015.) $)
rexrot4 $p |- ( E. x e. A E. y e. B E. z e. C E. w e. D ph
Expand Down Expand Up @@ -30221,7 +30222,7 @@ generally appear in a single form (either definitional, but more often
NBDCMOAIJK $.

${
$d y A $. $d x B $. $d x y $.
$d y A $. $d x y $.
reeanlem.1 $e |- ( E. x E. y ( ( x e. A /\ ph ) /\ ( y e. B /\ ps ) )
<-> ( E. x ( x e. A /\ ph ) /\ E. y ( y e. B /\ ps ) ) ) $.
$( Lemma factoring out common proof steps of ~ reeanv and ~ reean .
Expand Down Expand Up @@ -31200,8 +31201,8 @@ generally appear in a single form (either definitional, but more often
$}

${
$d w ph $. $d z ps $. $d x ch $. $d v ch $. $d y u th $. $d x A $.
$d w A $. $d x y B $. $d w y B $. $d v B $. $d x y z C $.
$d w ph $. $d z ps $. $d x ch $. $d v ch $. $d y th $. $d u th $.
$d x A $. $d w A $. $d x y B $. $d w y B $. $d v B $. $d x y z C $.
$d w y z C $. $d v z C $. $d z y C $. $d z C $. $d u C $.
cbvral3v.1 $e |- ( x = w -> ( ph <-> ch ) ) $.
cbvral3v.2 $e |- ( y = v -> ( ch <-> th ) ) $.
Expand Down Expand Up @@ -31493,7 +31494,7 @@ generally appear in a single form (either definitional, but more often
$}

${
$d A x y $. $d ph x $. $d ch y $.
$d x y $. $d A y $. $d ch y $.
rabrabi.1 $e |- ( x = y -> ( ch <-> ph ) ) $.
$( Abstract builder restricted to another restricted abstract builder with
implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid
Expand Down Expand Up @@ -32401,7 +32402,7 @@ general is seen either by substitution (when the variable ` V ` has no
$}

${
$d x y A $. $d x y B $. $d x y ps $.
$d x y $. $d x A $. $d x y B $. $d x y ps $.
vtocl2.1 $e |- A e. _V $.
vtocl2.2 $e |- B e. _V $.
vtocl2.3 $e |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) $.
Expand All @@ -32414,7 +32415,7 @@ general is seen either by substitution (when the variable ` V ` has no
$}

${
$d x y z A $. $d x y z B $. $d x y z C $. $d x y z ps $.
$d x y $. $d x A $. $d x y B $. $d x y z C $. $d x y z ps $.
vtocl3.1 $e |- A e. _V $.
vtocl3.2 $e |- B e. _V $.
vtocl3.3 $e |- C e. _V $.
Expand All @@ -32427,7 +32428,7 @@ general is seen either by substitution (when the variable ` V ` has no
vtocl3 $p |- ps $=
( cv wceq a1i wi wa wb 3expa pm5.74da vtocl2 2thd vtocl ) ABEHKENHOZABAUE
MPZUEAQUEBQCDFGIJCNFOZDNGOZRUEABUGUHUEABSLTUAUFUBUCMUD $.
$( $j usage 'vtocl3' avoids 'ax-10' 'ax-11'; $)
$( $j usage 'vtocl3' avoids 'ax-10' 'ax-11' 'ax-12'; $)
$}

${
Expand Down Expand Up @@ -32689,6 +32690,23 @@ general is seen either by substitution (when the variable ` V ` has no
( nfcv nfv vtocl3gaf ) ABCDEFGHIJKLMEHRFHRGHRFIRGIRGJRBESCFSDGSNOPQT $.
$}

${
$d A x $. $d A y $. $d B y $. $d ps x $. $d ch y $. $d C z $.
$d C w $. $d D w $. $d A z $. $d Q z $. $d B z $. $d R z $.
$d rh z $. $d A w $. $d Q w $. $d B w $. $d R w $. $d th w $.
vtocl4g.1 $e |- ( x = A -> ( ph <-> ps ) ) $.
vtocl4g.2 $e |- ( y = B -> ( ps <-> ch ) ) $.
vtocl4g.3 $e |- ( z = C -> ( ch <-> rh ) ) $.
vtocl4g.4 $e |- ( w = D -> ( rh <-> th ) ) $.
vtocl4g.5 $e |- ph $.
$( Implicit substitution of 4 classes for 4 setvar variables. (Contributed
by AV, 22-Jan-2019.) $)
vtocl4g $p |- ( ( ( A e. Q /\ B e. R )
/\ ( C e. S /\ D e. T ) ) -> th ) $=
( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCUEU
KEUEUKDUEHILMPQHUFLUGCEUKTUHIUFMUGEDUKUAUHABCFGJKNORSUBUIUIUJ $.
$}

${
$d w x y z A $. $d w y z B $. $d w z C $. $d w D $. $d w x y z R $.
$d w x y z S $. $d w x y z T $. $d w x y z Q $. $d x ps $. $d z rh $.
Expand All @@ -32697,16 +32715,6 @@ general is seen either by substitution (when the variable ` V ` has no
vtocl4ga.2 $e |- ( y = B -> ( ps <-> ch ) ) $.
vtocl4ga.3 $e |- ( z = C -> ( ch <-> rh ) ) $.
vtocl4ga.4 $e |- ( w = D -> ( rh <-> th ) ) $.
${
vtocl4g.5 $e |- ph $.
$( Implicit substitution of 4 classes for 4 setvar variables.
(Contributed by AV, 22-Jan-2019.) $)
vtocl4g $p |- ( ( ( A e. Q /\ B e. R )
/\ ( C e. S /\ D e. T ) ) -> th ) $=
( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCU
EUKEUEUKDUEHILMPQHUFLUGCEUKTUHIUFMUGEDUKUAUHABCFGJKNORSUBUIUIUJ $.
$}

vtocl4ga.5 $e |- ( ( ( x e. Q /\ y e. R )
/\ ( z e. S /\ w e. T ) ) -> ph ) $.
$( Implicit substitution of 4 classes for 4 setvar variables. (Contributed
Expand Down Expand Up @@ -34435,7 +34443,7 @@ general is seen either by substitution (when the variable ` V ` has no
( wreu wrmo wi wral reurmo rmoim syl5 ) BCDEBCDFABGCDHACDFBCDIABCDJK $.

${
$d x y A $. $d x B $.
$d x y $. $d y A $. $d x B $.
$( A condition allowing swap of uniqueness and existential quantifiers.
(Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM,
16-Jun-2017.) $)
Expand All @@ -34451,7 +34459,7 @@ general is seen either by substitution (when the variable ` V ` has no
$}

${
$d x y A $. $d x B $.
$d x y $. $d y A $. $d x B $.
$( A condition allowing swap of uniqueness and existential quantifiers.
(Contributed by Thierry Arnoux, 7-Apr-2017.) $)
2reuswap2 $p |- ( A. x e. A E* y ( y e. B /\ ph ) ->
Expand Down Expand Up @@ -34568,7 +34576,10 @@ general is seen either by substitution (when the variable ` V ` has no
( wrex wrmo nfcv nfre1 nfrmow wi wral cv wcel rmoim rspe ex syl11 ralrimi
ralrimivw ) ACEFZBDGZABDGZCEUACBDCDHACEIJAUAKZBDLUBUCCMENZAUABDOUEUDBDUEA
UAACEPQTRS $.
$}

${
$d y A $. $d x y $.
$( Lemma for ~ 2reu5 . Note that ` E! x e. A E! y e. B ph ` does not mean
"there is exactly one ` x ` in ` A ` and exactly one ` y ` in ` B ` such
that ` ph ` holds"; see comment for ~ 2eu5 . (Contributed by Alexander
Expand Down Expand Up @@ -34628,6 +34639,13 @@ that existential restriction in the last conjunct (the "at most one"
BCDEFGUNVQVOVBVQVKVPJZDLVOVPDFTWFVNDWFVLEGHVNVKVHEGUOVLEGTUPUQURUSUT $.
$}

$( Double restricted quantification with restricted existential uniqueness
and restricted "at most one", analogous to ~ 2eumo . (Contributed by
Alexander van der Vekens, 24-Jun-2017.) $)
2reurmo $p |- ( E! x e. A E* y e. B ph -> E* x e. A E! y e. B ph ) $=
( wreu wrmo wi reuimrmo cv wcel reurmo a1i mprg ) ACEFZACEGZHZPBDFOBDGHBDOP
BDIQBJDKACELMN $.

${
$d y A $. $d x y $. $d x B $.
$( Double restricted quantification with existential uniqueness, analogous
Expand All @@ -34639,13 +34657,6 @@ that existential restriction in the last conjunct (the "at most one"
LCOEPZUOUMQZULUPIABDHZUQUPULURUPAUJQZBDRULURQUPUSBDUPAUJACEUATUBAUJBDUCUD
SABDUEUFTUGUHSUI $.

$( Double restricted quantification with restricted existential uniqueness
and restricted "at most one", analogous to ~ 2eumo . (Contributed by
Alexander van der Vekens, 24-Jun-2017.) $)
2reurmo $p |- ( E! x e. A E* y e. B ph -> E* x e. A E! y e. B ph ) $=
( wreu wrmo wi reuimrmo cv wcel reurmo a1i mprg ) ACEFZACEGZHZPBDFOBDGHBD
OPBDIQBJDKACELMN $.

$( A condition allowing to swap restricted "at most one" and restricted
existential quantifiers, analogous to ~ 2moswap . (Contributed by
Alexander van der Vekens, 25-Jun-2017.) $)
Expand Down Expand Up @@ -34820,7 +34831,7 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy
$}

${
$d x ps $. $d y ph $.
$d x ps $.
nfcdeq.1 $e |- F/ x ph $.
nfcdeq.2 $e |- CondEq ( x = y -> ( ph <-> ps ) ) $.
$( If we have a conditional equality proof, where ` ph ` is ` ph ( x ) `
Expand All @@ -34835,7 +34846,7 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy
$}

${
$d x z B $. $d y z A $.
$d x z B $. $d y z $. $d z A $.
nfccdeq.1 $e |- F/_ x A $.
nfccdeq.2 $e |- CondEq ( x = y -> A = B ) $.
$( Variation of ~ nfcdeq for classes. Usage of this theorem is discouraged
Expand Down Expand Up @@ -36047,7 +36058,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use
$}

${
$d x y A $.
$d x y $. $d y A $.
rmo2.1 $e |- F/ y ph $.
$( Alternate definition of restricted "at most one." Note that
` E* x e. A ph ` is not equivalent to
Expand All @@ -36065,6 +36076,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use
( weq wi wral wrex wex wrmo rexex rmo2 sylibr ) ABCFGBDHZCDIOCJABDKOCDLAB
CDEMN $.

$d x A $.
$( Restricted "at most one" using explicit substitution. (Contributed by
NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) Avoid ~ ax-13 .
(Revised by Wolf Lammen, 30-Apr-2023.) $)
Expand Down Expand Up @@ -36122,7 +36134,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use
$}

${
$d x y A $. $d y ph $. $d y ps $.
$d x y $. $d y A $. $d y ph $. $d y ps $.
rmoanim.1 $e |- F/ x ph $.
$( Introduction of a conjunct into restricted "at most one" quantifier,
analogous to ~ moanim . (Contributed by Alexander van der Vekens,
Expand Down Expand Up @@ -36158,7 +36170,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use
$}

${
$d x y A $. $d x B $.
$d x y $. $d y A $. $d x B $.
$( Double restricted existential uniqueness. This theorem shows a
condition under which a "naive" definition matches the correct one,
analogous to ~ 2eu1 . (Contributed by Alexander van der Vekens,
Expand Down Expand Up @@ -36553,7 +36565,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use
$}

${
$d x A $. $d x V $.
$d x A $.
csbiegf.1 $e |- ( A e. V -> F/_ x C ) $.
csbiegf.2 $e |- ( x = A -> B = C ) $.
$( Conversion of implicit substitution to explicit substitution into a
Expand Down Expand Up @@ -39659,6 +39671,15 @@ technically classes despite morally (and provably) being sets, like ` 1 `
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)

$( Transfer uniqueness to a smaller or larger class. (Contributed by NM,
21-Oct-2005.) $)
reuun2 $p |- ( -. E. x e. B ph ->
( E! x e. ( A u. B ) ph <-> E! x e. A ph ) ) $=
( wrex wn cv wcel wa wo weu cun wreu wex df-rex euor2 sylnbi df-reu bitri
wb elun anbi1i andir orcom eubii 3bitr4g ) ABDEZFBGZDHZAIZUHCHZAIZJZBKZULBK
ZABCDLZMZABCMUGUJBNUNUOTABDOUJULBPQUQUHUPHZAIZBKUNABUPRUSUMBUSUKUIJZAIZUMUR
UTAUHCDUAUBVAULUJJUMUKUIAUCULUJUDSSUESABCRUF $.

${
$d x A $. $d x B $.
$( Transfer uniqueness to a smaller subclass. (Contributed by NM,
Expand Down Expand Up @@ -39686,15 +39707,6 @@ technically classes despite morally (and provably) being sets, like ` 1 `
( cun wss wo wi wral wrex wreu wa ssun1 orc rgenw reuss2 mpanl12 ) DDEFZG
AABHZIZCDJACDKTCSLMACDLDENUACDABOPATCDSQR $.

$( Transfer uniqueness to a smaller or larger class. (Contributed by NM,
21-Oct-2005.) $)
reuun2 $p |- ( -. E. x e. B ph ->
( E! x e. ( A u. B ) ph <-> E! x e. A ph ) ) $=
( wrex wn cv wcel wa wo weu cun wreu wex df-rex euor2 sylnbi df-reu bitri
wb elun anbi1i andir orcom eubii 3bitr4g ) ABDEZFBGZDHZAIZUHCHZAIZJZBKZUL
BKZABCDLZMZABCMUGUJBNUNUOTABDOUJULBPQUQUHUPHZAIZBKUNABUPRUSUMBUSUKUIJZAIZ
UMURUTAUHCDUAUBVAULUJJUMUKUIAUCULUJUDSSUESABCRUF $.

$( Restricted uniqueness "picks" a member of a subclass. (Contributed by
NM, 21-Aug-1999.) $)
reupick $p |- ( ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) /\ ph ) ->
Expand Down Expand Up @@ -40297,14 +40309,14 @@ among classes ( ~ eq0 , as opposed to the weaker uniqueness among sets,
rabxm $p |- A = ( { x e. A | ph } u. { x e. A | -. ph } ) $=
( wn wo crab cun wceq rabid2 cv wcel exmidd mprgbir unrab eqtr4i ) CAADZE
ZBCFZABCFPBCFGCRHQBCQBCIBJCKALMAPBCNO $.

$( Law of noncontradiction, in terms of restricted class abstractions.
(Contributed by Jeff Madsen, 20-Jun-2011.) $)
rabnc $p |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) $=
( crab wn cin wa c0 inrab wceq wral pm3.24 rgenw rabeq0 mpbir eqtri ) ABC
DAEZBCDFAQGZBCDZHAQBCISHJREZBCKTBCALMRBCNOP $.
$}

$( Law of noncontradiction, in terms of restricted class abstractions.
(Contributed by Jeff Madsen, 20-Jun-2011.) $)
rabnc $p |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) $=
( crab wn cin wa c0 inrab wceq wral pm3.24 rgenw rabeq0 mpbir eqtri ) ABCDA
EZBCDFAQGZBCDZHAQBCISHJREZBCKTBCALMRBCNOP $.

${
$d A s $.
elneldisj.e $e |- E = { s e. A | B e. C } $.
Expand Down Expand Up @@ -41404,17 +41416,17 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of
( wrex c0 wn wral wceq dfrex2 rzal con3i sylbi neqned ) ABCDZCENAFZBCGZFC
EHZFABCIQPOBCJKLM $.
$( $j usage 'rexn0' avoids 'df-clel' 'ax-8'; $)

$( Idempotent law for restricted quantifier. (Contributed by NM,
28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto,
2-Sep-2024.) $)
ralidm $p |- ( A. x e. A A. x e. A ph <-> A. x e. A ph ) $=
( wral cv wcel wi wal df-ral ax-1 axc4i pm2.21 sp ja impbii bicomi imbi2i
alimi albii 3bitrri bitri ) ABCDZBCDBECFZUBGZBHZUBUBBCIUBUCAGZBHZUCUGGZBH
ZUEABCIZUGUIUFUHBUGUCJKUHUFBUCUGUFUCALUFBMNROUHUDBUGUBUCUBUGUJPQSTUA $.
$( $j usage 'ralidm' avoids 'df-clel' 'df-cleq' 'ax-8' 'ax-9' 'ax-ext'; $)
$}

$( Idempotent law for restricted quantifier. (Contributed by NM,
28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto,
2-Sep-2024.) $)
ralidm $p |- ( A. x e. A A. x e. A ph <-> A. x e. A ph ) $=
( wral cv wcel wi df-ral ax-1 axc4i pm2.21 sp ja alimi impbii bicomi imbi2i
wal albii 3bitrri bitri ) ABCDZBCDBECFZUBGZBRZUBUBBCHUBUCAGZBRZUCUGGZBRZUEA
BCHZUGUIUFUHBUGUCIJUHUFBUCUGUFUCAKUFBLMNOUHUDBUGUBUCUBUGUJPQSTUA $.
$( $j usage 'ralidm' avoids 'df-clel' 'df-cleq' 'ax-8' 'ax-9' 'ax-ext'; $)

$( Vacuous universal quantification is always true. (Contributed by NM,
20-Oct-2005.) Avoid ~ df-clel , ~ ax-8 . (Revised by Gino Giotto,
2-Sep-2024.) $)
Expand Down Expand Up @@ -41538,7 +41550,7 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of
$}

${
$d x y A $. $d x y B $.
$d x y $. $d x A $. $d x y B $.
raaan2.1 $e |- F/ y ph $.
raaan2.2 $e |- F/ x ps $.
$( Rearrange restricted quantifiers with two different restricting classes,
Expand Down Expand Up @@ -44084,17 +44096,14 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ).
wa imbi2i 3bitri ralbii2 ) AEZABFZDGZHZBCDIJZCUDUGKZUCHUDCKZUDDLZSZUCHUIUJU
CHZHUIUFHUHUKUCUDCDMNUIUJUCOULUFUIULUEEZUCHUFUJUMUCUDDPNAUEQRTUAUB $.

${
$d x Y $.
$( Restricted universal quantification on a class difference with a
singleton in terms of an implication. (Contributed by Alexander van der
Vekens, 26-Jan-2018.) $)
raldifsnb $p |- ( A. x e. A ( x =/= Y -> ph )
<-> A. x e. ( A \ { Y } ) ph ) $=
( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne con4bii imbi1i
3bitr4ri ralbii raldifb bitri ) BEZDFZAGZBCHUDDIZJZAGZBCHABCUGKHUFUIBCUEU
HAUEUHUDUGLUDDMUHNUENBDOUDUGPUDDQTRSUAABCUGUBUC $.
$}
$( Restricted universal quantification on a class difference with a singleton
in terms of an implication. (Contributed by Alexander van der Vekens,
26-Jan-2018.) $)
raldifsnb $p |- ( A. x e. A ( x =/= Y -> ph )
<-> A. x e. ( A \ { Y } ) ph ) $=
( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne 3bitr4ri con4bii
imbi1i ralbii raldifb bitri ) BEZDFZAGZBCHUDDIZJZAGZBCHABCUGKHUFUIBCUEUHAUE
UHUDUGLUDDMUHNUENBDOUDUGPUDDQRSTUAABCUGUBUC $.

$( A set is an element of the universal class excluding a singleton iff it is
not the singleton element. (Contributed by AV, 7-Apr-2019.) $)
Expand Down Expand Up @@ -44366,15 +44375,18 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ).
$}

${
$d A w x y z $.
$d A w x y $. $d A w x z $.
$( A sufficient condition for a (nonempty) set to be a singleton.
(Contributed by AV, 20-Sep-2020.) $)
issn $p |- ( E. x e. A A. y e. A x = y -> E. z A = { z } ) $=
( weq wral cv csn wceq wex wcel wb equcom a1i ralbidv wne ne0i eqsn syl
c0 bitr4d sneq eqeq2d spcegv sylbid rexlimiv ) ABEZBDFZDCGZHZIZCJZADAGZDK
ZUHDUMHZIZULUNUHBAEZBDFZUPUNUGUQBDUGUQLUNABMNOUNDTPUPURLDUMQBDUMRSUAUKUPC
UMDCAEUJUODUIUMUBUCUDUEUF $.
$}

${
$d A w y x $. $d A w y $. $d A w z $.
$( A nonempty set is either a singleton or contains at least two different
elements. (Contributed by AV, 20-Sep-2020.) $)
n0snor2el $p |- ( A =/= (/)
Expand Down Expand Up @@ -46222,7 +46234,7 @@ same distinct variable group (meaning ` A ` cannot depend on ` x ` ) and
$}

${
$d x ph $. $d x A $.
$d x ph $.
iuneq2d.2 $e |- ( ph -> B = C ) $.
$( Equality deduction for indexed union. (Contributed by Drahflow,
22-Oct-2015.) $)
Expand Down
Loading