-
Notifications
You must be signed in to change notification settings - Fork 593
feat(llama2-70b): Add multinode to SUT_API.py for the offline scenario #2391
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Conversation
This reverts commit 325526f6aed7b2c18d93c19e561d743d3246a3b2.
This reverts commit b10eceddd3b9ecb824cd6d7248df8ada786ef132.
…of opening 1 request per sample
…rompt load over servers" This reverts commit f6769548b45a5872dd20a5c0a329a005c05a8664.
|
MLCommons CLA bot: |
Motivation
The LLaMA-2-70B benchmark (Offline Scenario) currently does not have multinode support.
Contents
This PR adds multinode inference support to LLaMA-2-70B benchmark (Offline Scenario) by enabling
SUT_API.pyto issue requests to multiple OpenAI-compatible endpoints (e.g., vLLM, TensorRT-LLM) simultaneously. Prompts are (mostly) evenly partitioned across servers.--vllm) with even prompt distribution across multiple OpenAI-compatible endpoints.query_batchandquery_servers).User facing Changes
Usage Example (Offline + Multinode API mode)
python3 -u main.py --scenario Offline \ --vllm \ --api-model-name ${MODEL_NAME} \ --api-server http://node1:8000 \ --api-server http://node2:8000 \ --api-server http://node3:8000 \ --model-path ${CHECKPOINT_PATH} \ --user-conf user.conf \ --total-sample-count 24576 \ --dataset-path ${DATASET_PATH} \ --output-log-dir offline-logsEach
--api-serverargument registers an endpoint; SUT_API distributes prompts across them automatically.