A Markov Chain Monte Carlo (MCMC) process that estimates a function's parameters using Metropolis–Hastings to fit data. See the notebook for all examples (damped oscillation example shown below).
import numpy as np
from mcmc_estimator import MCMCParameterEstimator as mcmc
np.random.seed(42)
# Test data
A_true = 3.0 # Amplitude
k_true = 0.5 # Decay rate
omega_true = 2.0 # Angular frequency
phi_true = 0.5 # Phase offset
sigma_true = 0.3 # Noise level
np.random.seed(42)
x_data = np.linspace(0, 10, 100) # x spans 0 to 10
y_true = A_true * np.exp(-k_true * x_data) * np.cos(omega_true * x_data + phi_true)
y_data = y_true + np.random.normal(0, sigma_true, size=len(x_data))
# Define model function
def damped_oscillation(params, x):
A, k, omega, phi = params
return A * np.exp(-k * x) * np.cos(omega * x + phi)
# MCMC Estimator
estimator = mcmc(
model_fn=damped_oscillation,
x_data=x_data,
y_data=y_data,
initial_params=[1.0, 1.0, 1.0, 0.0], # Initial guess for A, k, omega, phi
step_size=[0.2, 0.05, 0.1, 0.1], # Step sizes tuned for different scales
n_iterations=30000,
burn_in=0.3,
sigma_obs=sigma_true,
random_seed=42
)
estimator.run()
estimator.summary()
Acceptance Rate = 0.113
Parameter Estimates:
Param 0: mean=3.157, std=0.211, 95% CI=(2.770, 3.606)
Param 1: mean=0.491, std=0.042, 95% CI=(0.417, 0.580)
Param 2: mean=2.002, std=0.044, 95% CI=(1.914, 2.087)
Param 3: mean=0.443, std=0.060, 95% CI=(0.323, 0.560)
estimator.plot_diagnostics()
estimator.plot_fit()
# Access the parameter samples and calculate the means
samples = estimator.get_samples()
print(samples.mean(axis=0))
[3.15697316 0.49097106 2.00200042 0.44327931]

