|
29 | 29 | from dipy.sims.voxel import single_tensor |
30 | 30 |
|
31 | 31 | from nifreeze import model |
| 32 | +from nifreeze.data.base import BaseDataset |
32 | 33 | from nifreeze.data.dmri import DEFAULT_MAX_S0, DEFAULT_MIN_S0, DWI |
33 | 34 | from nifreeze.model._dipy import GaussianProcessModel |
34 | 35 | from nifreeze.model.base import mask_absence_warn_msg |
@@ -192,7 +193,86 @@ def test_dti_model(setup_random_dwi_data): |
192 | 193 | assert predicted.shape == dwi_dataobj.shape[:-1] |
193 | 194 |
|
194 | 195 |
|
195 | | -def test_factory(datadir): |
| 196 | +def test_factory_none_raises(setup_random_base_data): |
| 197 | + dataobj, affine, brainmask, motion_affines, datahdr = setup_random_base_data |
| 198 | + dataset = BaseDataset( |
| 199 | + dataobj=dataobj, |
| 200 | + affine=affine, |
| 201 | + brainmask=brainmask, |
| 202 | + motion_affines=motion_affines, |
| 203 | + datahdr=datahdr, |
| 204 | + ) |
| 205 | + with pytest.raises(RuntimeError, match="No model identifier provided."): |
| 206 | + model.ModelFactory.init(None, dataset=dataset) |
| 207 | + |
| 208 | + |
| 209 | +@pytest.mark.parametrize( |
| 210 | + "name, expected_cls", |
| 211 | + [ |
| 212 | + ("avg", model.ExpectationModel), |
| 213 | + ("average", model.ExpectationModel), |
| 214 | + ("mean", model.ExpectationModel), |
| 215 | + ], |
| 216 | +) |
| 217 | +def test_factory_variants(name, expected_cls, setup_random_base_data): |
| 218 | + dataobj, affine, brainmask, motion_affines, datahdr = setup_random_base_data |
| 219 | + dataset = BaseDataset( |
| 220 | + dataobj=dataobj, |
| 221 | + affine=affine, |
| 222 | + brainmask=brainmask, |
| 223 | + motion_affines=motion_affines, |
| 224 | + datahdr=datahdr, |
| 225 | + ) |
| 226 | + model_instance = model.ModelFactory.init(name, dataset=dataset) |
| 227 | + assert isinstance(model_instance, expected_cls) |
| 228 | + |
| 229 | + |
| 230 | +@pytest.mark.parametrize("name", ["avgdwi", "averagedwi", "meandwi"]) |
| 231 | +def test_factory_avgdwi_variants(monkeypatch, name, setup_random_dwi_data): |
| 232 | + ( |
| 233 | + dwi_dataobj, |
| 234 | + affine, |
| 235 | + brainmask_dataobj, |
| 236 | + b0_dataobj, |
| 237 | + gradients, |
| 238 | + _, |
| 239 | + ) = setup_random_dwi_data |
| 240 | + |
| 241 | + dataset = DWI( |
| 242 | + dataobj=dwi_dataobj, |
| 243 | + affine=affine, |
| 244 | + brainmask=brainmask_dataobj, |
| 245 | + bzero=b0_dataobj, |
| 246 | + gradients=gradients, |
| 247 | + ) |
| 248 | + |
| 249 | + # Dummy class to simulate AverageDWIModel |
| 250 | + class DummyAvgDWI: |
| 251 | + def __init__(self, _dataset, **kwargs): |
| 252 | + self._dataset = _dataset |
| 253 | + self._kwargs = kwargs |
| 254 | + |
| 255 | + # Patch import for AverageDWIModel |
| 256 | + import sys |
| 257 | + import types as _types |
| 258 | + |
| 259 | + old_module = sys.modules.get("nifreeze.model.dmri") |
| 260 | + dmri_module = _types.ModuleType("nifreeze.model.dmri") |
| 261 | + dmri_module.AverageDWIModel = DummyAvgDWI |
| 262 | + sys.modules["nifreeze.model.dmri"] = dmri_module |
| 263 | + |
| 264 | + try: |
| 265 | + model_instance = model.ModelFactory.init(name, dataset=dataset) |
| 266 | + assert isinstance(model_instance, DummyAvgDWI) |
| 267 | + finally: |
| 268 | + # Restore previous state |
| 269 | + if old_module is not None: |
| 270 | + sys.modules["nifreeze.model.dmri"] = old_module |
| 271 | + else: |
| 272 | + del sys.modules["nifreeze.model.dmri"] |
| 273 | + |
| 274 | + |
| 275 | +def test_factory_initializations(datadir): |
196 | 276 | """Check that the two different initialisations result in the same models""" |
197 | 277 |
|
198 | 278 | # Load test data |
|
0 commit comments