Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
232 changes: 232 additions & 0 deletions joss.06902/10.21105.joss.06902.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20251012213806-6c8b83386c330c85dd208530ff4a02541d7f54bb</doi_batch_id>
<timestamp>20251012213806</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2025</year>
</publication_date>
<journal_volume>
<volume>10</volume>
</journal_volume>
<issue>114</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PathFinder: A Matlab/Octave package for oscillatory integration</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Andrew</given_name>
<surname>Gibbs</surname>
<affiliations>
<institution><institution_name>University College London, United Kingdom</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-2934-008X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>12</day>
<year>2025</year>
</publication_date>
<pages>
<first_page>6902</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06902</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.17058699</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6902</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06902</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06902</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06902.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="OcTeHeGi:24">
<article_title>A caustic terminating at an inflection point</article_title>
<author>Ockendon</author>
<journal_title>Wave Motion</journal_title>
<volume>125</volume>
<doi>10.1016/j.wavemoti.2023.103257</doi>
<issn>0165-2125</issn>
<cYear>2024</cYear>
<unstructured_citation>Ockendon, J. R., Ockendon, H., Tew, R. H., Hewett, D. P., &amp; Gibbs, A. (2024). A caustic terminating at an inflection point. Wave Motion, 125, Paper No. 103257. https://doi.org/10.1016/j.wavemoti.2023.103257</unstructured_citation>
</citation>
<citation key="PathFinderPaper">
<article_title>Numerical evaluation of oscillatory integrals via automated steepest descent contour deformation</article_title>
<author>Gibbs</author>
<journal_title>Journal of Computational Physics</journal_title>
<doi>10.1016/j.jcp.2024.112787</doi>
<issn>0021-9991</issn>
<cYear>2024</cYear>
<unstructured_citation>Gibbs, A., Hewett, D. P., &amp; Huybrechs, D. (2024). Numerical evaluation of oscillatory integrals via automated steepest descent contour deformation. Journal of Computational Physics, 112787. https://doi.org/10.1016/j.jcp.2024.112787</unstructured_citation>
</citation>
<citation key="DLMF">
<article_title>NIST Digital Library of Mathematical Functions</article_title>
<cYear>2023</cYear>
<unstructured_citation>NIST Digital Library of Mathematical Functions. (2023). http://dlmf.nist.gov</unstructured_citation>
</citation>
<citation key="NIntegrate">
<article_title>Mathematica NIntegrate integration rules - LevinRule</article_title>
<author>Wolfram</author>
<cYear>2024</cYear>
<unstructured_citation>Wolfram. (2024). Mathematica NIntegrate integration rules - LevinRule. https://reference.wolfram.com/language/tutorial/NIntegrateIntegrationRules.html#32844337</unstructured_citation>
</citation>
<citation key="DAryo">
<article_title>Dijkstra algorithm</article_title>
<author>Aryo</author>
<cYear>2024</cYear>
<unstructured_citation>Aryo, D. (2024). Dijkstra algorithm. https://www.mathworks.com/matlabcentral/fileexchange/36140-dijkstra-algorithm</unstructured_citation>
</citation>
<citation key="DeHuIs:18">
<volume_title>Computing Highly Oscillatory Integrals</volume_title>
<author>Deaño</author>
<doi>10.1137/1.9781611975123</doi>
<cYear>2018</cYear>
<unstructured_citation>Deaño, A., Huybrechs, D., &amp; Iserles, A. (2018). Computing Highly Oscillatory Integrals. SIAM. https://doi.org/10.1137/1.9781611975123</unstructured_citation>
</citation>
<citation key="HuVa:06">
<article_title>On the evaluation of highly oscillatory integrals by analytic continuation</article_title>
<author>Huybrechs</author>
<journal_title>SIAM J. Numer. Anal.</journal_title>
<issue>3</issue>
<volume>44</volume>
<doi>10.1137/050636814</doi>
<issn>0036-1429</issn>
<cYear>2006</cYear>
<unstructured_citation>Huybrechs, D., &amp; Vandewalle, S. (2006). On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal., 44(3), 1026–1048. https://doi.org/10.1137/050636814</unstructured_citation>
</citation>
<citation key="Popov79">
<article_title>The problem of whispering gallery waves in a neighbourhood of a simple zero of the effective curvature of the boundary</article_title>
<author>Popov</author>
<journal_title>J. Sov. Math. (now J. Math. Sci.)</journal_title>
<volume>11</volume>
<doi>10.1007/BF01455058</doi>
<cYear>1979</cYear>
<unstructured_citation>Popov, M. M. (1979). The problem of whispering gallery waves in a neighbourhood of a simple zero of the effective curvature of the boundary. J. Sov. Math. (Now J. Math. Sci.), 11, 791–797. https://doi.org/10.1007/BF01455058</unstructured_citation>
</citation>
<citation key="HuJuLe:19">
<article_title>A numerical method for oscillatory integrals with coalescing saddle points</article_title>
<author>Huybrechs</author>
<journal_title>SIAM J. Numer. Anal.</journal_title>
<issue>6</issue>
<volume>57</volume>
<doi>10.1137/18M1221138</doi>
<issn>0036-1429</issn>
<cYear>2019</cYear>
<unstructured_citation>Huybrechs, D., K., A., &amp; Lejon, N. (2019). A numerical method for oscillatory integrals with coalescing saddle points. SIAM J. Numer. Anal., 57(6), 2707–2729. https://doi.org/10.1137/18M1221138</unstructured_citation>
</citation>
<citation key="Pe:46">
<article_title>The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic</article_title>
<author>Pearcey</author>
<journal_title>Philos. Mag. (7)</journal_title>
<volume>37</volume>
<doi>10.1080/14786444608561335</doi>
<issn>0031-8086</issn>
<cYear>1946</cYear>
<unstructured_citation>Pearcey, T. (1946). The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic. Philos. Mag. (7), 37, 311–317. https://doi.org/10.1080/14786444608561335</unstructured_citation>
</citation>
<citation key="Ar:81">
<article_title>Lagrangian manifolds with singularities, asymptotic rays and the unfurled swallowtail</article_title>
<author>Arnol’d</author>
<journal_title>Funktsional. Anal. i Prilozhen.</journal_title>
<issue>4</issue>
<volume>15</volume>
<doi>10.1007/BF01106152</doi>
<issn>0374-1990</issn>
<cYear>1981</cYear>
<unstructured_citation>Arnol’d, V. I. (1981). Lagrangian manifolds with singularities, asymptotic rays and the unfurled swallowtail. Funktsional. Anal. I Prilozhen., 15(4), 1–14, 96. https://doi.org/10.1007/BF01106152</unstructured_citation>
</citation>
<citation key="HeOcSm:19">
<article_title>Contour integral solutions of the parabolic wave equation</article_title>
<author>Hewett</author>
<journal_title>Wave Motion</journal_title>
<volume>84</volume>
<doi>10.1016/j.wavemoti.2018.09.015</doi>
<cYear>2019</cYear>
<unstructured_citation>Hewett, D. P., Ockendon, J. R., &amp; Smyshlyaev, V. P. (2019). Contour integral solutions of the parabolic wave equation. Wave Motion, 84, 90–109. https://doi.org/10.1016/j.wavemoti.2018.09.015</unstructured_citation>
</citation>
<citation key="KiCoHo:00">
<article_title>An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives</article_title>
<author>Kirk</author>
<journal_title>Comp. Phys. Comm.</journal_title>
<issue>1</issue>
<volume>132</volume>
<doi>10.1016/S0010-4655(00)00126-0</doi>
<issn>0010-4655</issn>
<cYear>2000</cYear>
<unstructured_citation>Kirk, N. P., Connor, J. N. L., &amp; Hobbs, C. A. (2000). An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives. Comp. Phys. Comm., 132(1), 142–165. https://doi.org/10.1016/S0010-4655(00)00126-0</unstructured_citation>
</citation>
<citation key="dijkstra2022note">
<article_title>A note on two problems in connexion with graphs</article_title>
<author>Dijkstra</author>
<volume>1</volume>
<doi>10.1007/BF01386390</doi>
<cYear>1959</cYear>
<unstructured_citation>Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. 1, 269–271. https://doi.org/10.1007/BF01386390</unstructured_citation>
</citation>
<citation key="gautschi2004orthogonal">
<volume_title>Orthogonal polynomials: Computation and approximation</volume_title>
<author>Gautschi</author>
<doi>10.1093/oso/9780198506720.001.0001</doi>
<cYear>2004</cYear>
<unstructured_citation>Gautschi, W. (2004). Orthogonal polynomials: Computation and approximation. OUP Oxford. https://doi.org/10.1093/oso/9780198506720.001.0001</unstructured_citation>
</citation>
<citation key="FePeTu:23">
<article_title>Oscillatory path integrals for radio astronomy</article_title>
<author>Feldbrugge</author>
<journal_title>Annals of Physics</journal_title>
<volume>451</volume>
<doi>10.1016/j.aop.2023.169255</doi>
<issn>0003-4916</issn>
<cYear>2023</cYear>
<unstructured_citation>Feldbrugge, J., Pen, U.-L., &amp; Turok, N. (2023). Oscillatory path integrals for radio astronomy. Annals of Physics, 451, 169255. https://doi.org/10.1016/j.aop.2023.169255</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06902/10.21105.joss.06902.pdf
Binary file not shown.
Loading