This repository contains research code for building dynamic bubble-overlap networks, optional FRM (quantile-regression) networks, and TGNN-based forecasting of node-level risk proxies (e.g., eigenvector centrality).
Activate the existing venv (or create a new one) and install dependencies:
cd c:\Users\Radu\VSCode\StochasticDominanceBubbles
.\.venv\Scripts\Activate.ps1
python -m pip install -r requirements.txt
python -m pip install -e .CPU-only alternative:
python -m pip install -r requirements-lite.txt
python -m pip install -e .Minimal (fast) run:
python scripts/run_pipeline.py --skip-temporal --skip-centralityFull rebuild (creates artifacts in results/ and figures/):
python scripts/run_pipeline.py --run-frm --start-date 2020-01-01Run TGNN explicitly:
python scripts/run_tgnn.py --mode bubble --epochs 50 --model gconvgrupowershell -NoProfile -ExecutionPolicy Bypass -File scripts/build_paper.ps1Output: documents/build/main.pdf
src/ # importable research modules (active pipeline)
scripts/ # thin CLIs + build tooling
data/ro/ # Romanian market inputs (Excel)
data/stoxx600/ # STOXX600 inputs (Excel)
figures/ # generated plots (artifacts; not tracked)
results/ # generated tables/pkl (artifacts; not tracked)
documents/ # LaTeX paper + build output
legacy_sd/ # isolated stochastic dominance code (not in active pipeline)
notebooks/ # exploratory notebooks
figures/andresults/are treated as generated artifacts and are not tracked in git (kept via.gitkeep).- Intermediate
*.pklproduced by runs is not tracked.
.\.venv\Scripts\Activate.ps1
python -m pip install -r requirements-lite.txt
python -m pip install -e .
pytest -qSD is intentionally removed from the active pipeline for now and kept isolated in legacy_sd/.
See legacy_sd/README.md.