Middleware for forwarding IBC packets.
Asynchronous acknowledgements are utilized for atomic multi-hop packet flows. The acknowledgement will only be written on the chain where the user initiated the packet flow after the forward/multi-hop sequence has completed (success or failure). This means that a user (i.e. an IBC application) only needs to monitor the chain where the initial transfer was sent for the response of the entire process.
The packet-forward-middleware is an IBC middleware module built for Cosmos blockchains utilizing the IBC protocol. A chain which incorporates the packet-forward-middleware is able to route incoming IBC packets from a source chain to a destination chain. As the Cosmos SDK/IBC become commonplace in the blockchain space more and more zones will come online, these new zones joining are noticing a problem: they need to maintain a large amount of infrastructure (archive nodes and relayers for each counterparty chain) to connect with all the chains in the ecosystem, a number that is continuing to increase quickly. Luckily this problem has been anticipated and IBC has been architected to accommodate multi-hop transactions. However, a packet forwarding/routing feature was not in the initial IBC release.
channel-0 channel-1 channel-2 channel-3 channel-4 channel-5
┌───────┐ ibc ┌───────┐ ibc ┌───────┐ ibc ┌───────┐
│Chain A│◄────────────────►│Chain B│◄────────────────►│Chain C│◄────────────────►│Chain D│
└───────┘ └───────┘ └───────┘ └───────┘
1. transfer 2. recv_packet 3. forward 4. recv_packet 5. forward 6. recv_packet
─────────────────► packet ─────────────────► packet ─────────────────►
9. ack forward 8. ack forward 7. ack
◄───────────────── middleware◄─────────────── middleware◄───────────────
channel-0 channel-1 channel-2 channel-3 channel-4 channel-5
┌───────┐ ibc ┌───────┐ ibc ┌───────┐ ibc ┌───────┐
│Chain A│◄────────────────►│Chain B│◄────────────────►│Chain C│◄────────────────►│Chain D│
└───────┘ └───────┘ └───────┘ └───────┘
1. transfer 2. recv_packet 3. forward 4. recv_packet 5. forward 6. recv_packet ERR
─────────────────► packet ─────────────────► packet ─────────────────►
9. ack ERR forward 8. ack ERR forward 7. ack ERR
◄───────────────── middleware◄─────────────── middleware◄───────────────
channel-0 channel-1 channel-2 channel-3
┌───────┐ ibc ┌───────┐ ibc ┌───────┐
│Chain A│◄────────────────►│Chain B│◄────────────────►│Chain C│
└───────┘ └───────┘ └───────┘
1. transfer 2. recv_packet 3. forward
─────────────────► packet ─────────────────►
forward 4. timeout
middleware◄───────────────
5. forward retry
─────────────────►
7. ack ERR 6. timeout
◄───────────────── ◄─────────────────
Utilizing the packet memo field, instructions can be encoded as JSON for multi-hop sequences.
- The packet-forward-middleware integrated on Chain B.
- The packet data
receiverfor theMsgTransferon Chain A is set to"pfm"or some other invalid bech32 string.* - The packet
memois included inMsgTransferby user on Chain A.
memo:
{
"forward": {
"receiver": "chain-c-bech32-address",
"port": "transfer",
"channel": "channel-123"
}
}- The packet-forward-middleware integrated on Chain B and Chain C.
- The packet data
receiverfor theMsgTransferon Chain A is set to"pfm"or some other invalid bech32 string.* - The forward metadata
receiverfor the hop from Chain B to Chain C is set to"pfm"or some other invalid bech32 string.* - The packet
memois included inMsgTransferby user on Chain A. - A packet timeout of 10 minutes and 2 retries is set for both forwards.
In the case of a timeout after 10 minutes for either forward, the packet would be retried up to 2 times, at which case an error ack would be written to issue a refund on the prior chain.
next is the memo to pass for the next transfer hop. Per memo intended usage of a JSON string, it should be either JSON which will be Marshaled retaining key order, or an escaped JSON string which will be passed directly.
next as JSON
{
"forward": {
"receiver": "pfm", // purposely using invalid bech32 here*
"port": "transfer",
"channel": "channel-123",
"timeout": "10m",
"retries": 2,
"next": {
"forward": {
"receiver": "chain-d-bech32-address",
"port": "transfer",
"channel":"channel-234",
"timeout":"10m",
"retries": 2
}
}
}
}next as escaped JSON string
{
"forward": {
"receiver": "pfm", // purposely using invalid bech32 here*
"port": "transfer",
"channel": "channel-123",
"timeout": "10m",
"retries": 2,
"next": "{\"forward\":{\"receiver\":\"chain-d-bech32-address\",\"port\":\"transfer\",\"channel\":\"channel-234\",\"timeout\":\"10m\",\"retries\":2}}"
}
}PFM does not need the packet data receiver address to be valid, as it will create a hash of the sender and channel to derive a receiver address on the intermediate chains. This is done for security purposes to ensure that users cannot move funds through arbitrary accounts on intermediate chains.
To prevent accidentally sending funds to a chain which does not have PFM, it is recommended to use an invalid bech32 string (such as "pfm") for the receiver on intermediate chains. By using an invalid bech32 string, a transfer that is accidentally sent to a chain that does not have PFM would fail to be received, and properly refunded to the user on the source chain, rather than having funds get stuck on the intermediate chain.
The examples above show the intended usage of the receiver field for one or multiple intermediate PFM chains.
Flow sequence mainly encoded in middleware and in keeper.
Describes A sending to C via B in several scenarios with operational opened channels, enabled denom composition, fees and available to refund, but no retries.
Generally without memo to handle, all handling by this module is delegated to ICS-020. ICS-020 ACK are written and parsed in any case (ACK are backwarded).
AThis sends packet over underlying ICS-004 wrapper with memo as is.BThis receives packet and parses it into ICS-020 packet.BValidatesforwardpacket on this step, returnACKerror if fails.BIf other middleware not yet called ICS-020, call it and ACK error on fail. Tokens minted or unescrowed here.BHandle denom. If denom prefix is fromB, remove it. If denom prefix is other chain - addBprefix.BTake fee, create new ICS-004 packet with timeout from forward for next step, and remaining innermemo.BSend transfer toCwith parameters obtained frommemo. Tokens burnt or escrowed here.BStore trackingin flight packetunder next(channel, port, ICS-20 transfer sequence), do notACKpacket yet.CHandle ICS-020 packet as usual.BOn ICS-020 ACK fromCfindin flight packet, delete it and writeACKfor original packet fromA.AHandle ICS-020ACKas usual
BOn ICS-020 ACK fromCfindin flight packet, delete itBBurns or escrows tokens.BAnd write errorACKfor original packet fromA.AHandle ICS-020 timeout as usualCwrites successACKfor packet fromB
Same behavior in case of timeout on C
ACannot timeout becausein flight packethas proof onBof packet inclusion.Bwaits for ACK or timeout fromC.Btimeout fromCbecomes failACKonBforAAreceives success or failACK, but not timeout
In this case A assets hang until final hop timeouts or ACK.