This is a web-based Question Answering (QA) system built using the pretrained DistilBERT model fine-tuned on the Natural Questions dataset. It allows users to input a passage and ask a question related to it, and returns the most probable answer using deep learning.
- Uses
AsmaAwad/distilbert-base-uncased-NaturalQuestionstransformer model - Accepts user-provided paragraph and question inputs
- Predicts and highlights the most relevant answer
- Flask backend for inference API
- Simple, user-friendly web interface
- Frontend: HTML, CSS, Bootstrap
- Backend: Python, Flask
- AI Engine: Hugging Face Transformers, DistilBERT
- Model:
AsmaAwad/distilbert-base-uncased-NaturalQuestions
git clone https://github.com/yourusername/Question-Answering-System-Using-DistilBERT-NQ.git
cd Question-Answering-System-Using-DistilBERT-NQ
python -m venv venv
source venv/bin/activate # For Linux/macOS
venv\Scripts\activate # For Windows
pip install -r requirements.txt
pip install flask transformers torch
python app.py
QA System/
β
βββ app.py # Flask application
βββ templates/
β βββ index.html # HTML form for user input
βββ static/
β βββ styles.css # Styling
βββ model/
β βββ [optional model loading or tokenizer cache]
βββ README.md # Project overview