Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
340 changes: 340 additions & 0 deletions content/providers/03-community-providers/22-runpod.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
---
title: Runpod
description: Runpod Provider for the AI SDK
---

# Runpod

The official [Runpod](https://runpod.io) provider contains language model and image generation support for public & private endpoints.

## Setup

The Runpod provider is available in the `@runpod/ai-sdk-provider` module. You can install it with:

<Tabs items={['pnpm', 'npm', 'yarn', 'bun']}>
<Tab>
<Snippet text="pnpm add @runpod/ai-sdk-provider" dark />
</Tab>
<Tab>
<Snippet text="npm install @runpod/ai-sdk-provider" dark />
</Tab>
<Tab>
<Snippet text="yarn add @runpod/ai-sdk-provider" dark />
</Tab>
<Tab>
<Snippet text="bun add @runpod/ai-sdk-provider" dark />
</Tab>
</Tabs>

## Provider Instance

You can import the default provider instance `runpod` from `@runpod/ai-sdk-provider`:

```ts
import { runpod } from '@runpod/ai-sdk-provider';
```

If you need a customized setup, you can import `createRunpod` and create a provider instance with your settings:

```ts
import { createRunpod } from '@runpod/ai-sdk-provider';

const runpod = createRunpod({
apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
baseURL: 'custom-url', // optional, for custom endpoints
headers: {
/* custom headers */
}, // optional
});
```

You can use the following optional settings to customize the Runpod provider instance:

- **baseURL** _string_

Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints.
Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API.
The default prefix is `https://api.runpod.ai/v2`.

- **apiKey** _string_

API key that is being sent using the `Authorization` header.
It defaults to the `RUNPOD_API_KEY` environment variable.
You can obtain your api key from the [Runpod Console](https://console.runpod.io/user/settings) under "API Keys".

- **headers** _Record&lt;string,string&gt;_

Custom headers to include in the requests.

- **fetch** _(input: RequestInfo, init?: RequestInit) => Promise&lt;Response&gt;_

Custom [fetch](https://developer.mozilla.org/en-US/docs/Web/API/fetch) implementation.
You can use it as a middleware to intercept requests,
or to provide a custom fetch implementation for e.g. testing.

## Language Models

You can create language models using the provider instance. The first argument is the model ID:

```ts
import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt: 'What is the capital of Germany?',
});
```

**Returns:**

- `text` - Generated text string
- `finishReason` - Why generation stopped ('stop', 'length', etc.)
- `usage` - Token usage information (prompt, completion, total tokens)

### Streaming

```ts
import { runpod } from '@runpod/ai-sdk-provider';
import { streamText } from 'ai';

const { textStream } = await streamText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt:
'Write a short poem about artificial intelligence in exactly 4 lines.',
temperature: 0.7,
});

for await (const delta of textStream) {
process.stdout.write(delta);
}
```

### Model Capabilities

| Model ID | Description | Streaming | Object Generation | Tool Usage | Reasoning Notes |
| -------------------------------------- | ------------------------------------------------------------------- | ------------------- | ------------------- | ------------------- | ------------------------------------------------------------ |
| `deep-cogito/deep-cogito-v2-llama-70b` | 70B parameter general-purpose LLM with advanced reasoning | <Check size={18} /> | <Cross size={18} /> | <Check size={18} /> | Emits `<think>…</think>` inline; no separate reasoning parts |
| `qwen/qwen3-32b-awq` | 32B parameter multilingual model with strong reasoning capabilities | <Check size={18} /> | <Cross size={18} /> | <Check size={18} /> | Standard reasoning events |

### Chat Conversations

```ts
const { text } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'What is the capital of France?' },
],
});
```

### Tool Calling

```ts
import { generateText, tool } from 'ai';
import { z } from 'zod';

const { text, toolCalls } = await generateText({
model: runpod('deep-cogito/deep-cogito-v2-llama-70b'),
prompt: 'What is the weather like in San Francisco?',
tools: {
getWeather: tool({
description: 'Get weather information for a city',
inputSchema: z.object({
city: z.string().describe('The city name'),
}),
execute: async ({ city }) => {
return `The weather in ${city} is sunny.`;
},
}),
},
});
```

**Additional Returns:**

- `toolCalls` - Array of tool calls made by the model
- `toolResults` - Results from executed tools

### Structured output

Using `generateObject` to enforce structured ouput is not supported by two models that are part of this provider.

You can still return structured data by instructing the model to return JSON and validating it yourself.

```ts
import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
import { z } from 'zod';

const RecipeSchema = z.object({
name: z.string(),
ingredients: z.array(z.string()),
steps: z.array(z.string()),
});

const { text } = await generateText({
model: runpod('qwen/qwen3-32b-awq'),
messages: [
{
role: 'system',
content:
'return ONLY valid JSON matching { name: string; ingredients: string[]; steps: string[] }',
},
{ role: 'user', content: 'generate a lasagna recipe.' },
],
temperature: 0,
});

const parsed = JSON.parse(text);
const result = RecipeSchema.safeParse(parsed);

if (!result.success) {
// handle invalid JSON shape
}

console.log(result.success ? result.data : parsed);
```

## Image Models

You can create Runpod image models using the `.imageModel()` factory method.

### Basic Usage

```ts
import { runpod } from '@runpod/ai-sdk-provider';
import { experimental_generateImage as generateImage } from 'ai';

const { image } = await generateImage({
model: runpod.imageModel('qwen/qwen-image'),
prompt: 'A serene mountain landscape at sunset',
aspectRatio: '4:3',
});

// Save to filesystem
import { writeFileSync } from 'fs';
writeFileSync('landscape.jpg', image.uint8Array);
```

**Returns:**

- `image.uint8Array` - Binary image data (efficient for processing/saving)
- `image.base64` - Base64 encoded string (for web display)
- `image.mediaType` - MIME type ('image/jpeg' or 'image/png')
- `warnings` - Array of any warnings about unsupported parameters

### Model Capabilities

| Model ID | Description | Supported Aspect Ratios |
| -------------------------------------- | ------------------------------- | ------------------------------------- |
| `bytedance/seedream-3.0` | Advanced text-to-image model | 1:1, 4:3, 3:4 |
| `bytedance/seedream-4.0` | Text-to-image (v4) | 1:1 (supports 1024, 2048, 4096) |
| `bytedance/seedream-4.0-edit` | Image editing (v4, multi-image) | 1:1 (supports 1024, 1536, 2048, 4096) |
| `black-forest-labs/flux-1-schnell` | Fast image generation (4 steps) | 1:1, 4:3, 3:4 |
| `black-forest-labs/flux-1-dev` | High-quality image generation | 1:1, 4:3, 3:4 |
| `black-forest-labs/flux-1-kontext-dev` | Context-aware image generation | 1:1, 4:3, 3:4 |
| `qwen/qwen-image` | Text-to-image generation | 1:1, 4:3, 3:4 |
| `qwen/qwen-image-edit` | Image editing (prompt-guided) | 1:1, 4:3, 3:4 |

**Note**: The provider uses strict validation for image parameters. Unsupported aspect ratios (like `16:9`, `9:16`, `3:2`, `2:3`) will throw an `InvalidArgumentError` with a clear message about supported alternatives.

### Advanced Parameters

```ts
const { image } = await generateImage({
model: runpod.imageModel('bytedance/seedream-3.0'),
prompt: 'A sunset over mountains',
size: '1328x1328',
seed: 42,
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality',
enable_safety_checker: true,
},
},
});
```

#### Modify Image

Transform existing images using text prompts.

```ts
// Example: Transform existing image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Transform this into a cyberpunk style with neon lights',
aspectRatio: '1:1',
providerOptions: {
runpod: {
image: 'https://example.com/input-image.jpg',
},
},
});

// Example: Using base64 encoded image
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-kontext-dev'),
prompt: 'Make this image look like a painting',
providerOptions: {
runpod: {
image: '...',
},
},
});
```

### Advanced Configuration

```ts
// Full control over generation parameters
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-dev'),
prompt: 'A majestic dragon breathing fire in a medieval castle',
size: '1328x1328',
seed: 42, // For reproducible results
providerOptions: {
runpod: {
negative_prompt: 'blurry, low quality, distorted, ugly, bad anatomy',
enable_safety_checker: true,
num_inference_steps: 50, // Higher quality (default: 28)
guidance: 3.5, // Stronger prompt adherence (default: 2)
output_format: 'png', // High quality format
// Polling settings for long generations
maxPollAttempts: 30,
pollIntervalMillis: 4000,
},
},
});

// Fast generation with minimal steps
const { image } = await generateImage({
model: runpod.imageModel('black-forest-labs/flux-1-schnell'),
prompt: 'A simple red apple',
aspectRatio: '1:1',
providerOptions: {
runpod: {
num_inference_steps: 2, // Even faster (default: 4)
guidance: 10, // Higher guidance for simple prompts
output_format: 'jpg', // Smaller file size
},
},
});
```

### Provider Options

Runpod image models support flexible provider options through the `providerOptions.runpod` object:

| Option | Type | Default | Description |
| ----------------------- | --------- | ------- | ----------------------------------------------------------------------- |
| `negative_prompt` | `string` | `""` | Text describing what you don't want in the image |
| `enable_safety_checker` | `boolean` | `true` | Enable content safety filtering |
| `image` | `string` | - | Input image: URL or base64 data URI (required for Flux Kontext models) |
| `num_inference_steps` | `number` | Auto | Number of denoising steps (Flux: 4 for schnell, 28 for others) |
| `guidance` | `number` | Auto | Guidance scale for prompt adherence (Flux: 7 for schnell, 2 for others) |
| `output_format` | `string` | `"png"` | Output image format ("png" or "jpg") |
| `maxPollAttempts` | `number` | `60` | Maximum polling attempts for async generation |
| `pollIntervalMillis` | `number` | `5000` | Polling interval in milliseconds (5 seconds) |
Loading