Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
356 changes: 356 additions & 0 deletions tests/ut/ops/test_fused_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,356 @@
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
from typing import List, TypedDict
from unittest.mock import MagicMock, patch

import pytest
import torch
import torch.nn as nn
from pytest_mock import MockerFixture

from vllm_ascend.ops.fused_moe import (AscendFusedMoE,
AscendUnquantizedFusedMoEMethod)
from vllm_ascend.utils import adapt_patch # noqa E402

adapt_patch(True)


def mock_ep_group(mocker):
mock_group = mocker.MagicMock()
mock_group.rank_in_group = 0
mock_group.rank = 0
mock_group.world_size = 4
mock_group.device_group = "mock_group_ep"
mock_group.all_to_all = MagicMock(return_value=torch.randn(8, 8))
return mock_group


def mock_dp_and_tp_group(mocker):
mock_group = mocker.MagicMock()
mock_group.rank_in_group = 0
mock_group.world_size = 2
mock_group.device_group = "mock_group"
mock_group.all_gather = MagicMock(return_value=torch.randn(10, 32))
return mock_group


@pytest.fixture
def mock_dist_env(mocker: MockerFixture):
# init dist env patch

with patch('torch.distributed.get_rank', return_value=0), \
patch('torch.distributed.get_world_size', return_value=4), \
patch('vllm_ascend.ops.fused_moe.get_ep_group', return_value=mock_ep_group(mocker)), \
patch('vllm_ascend.ops.fused_moe.get_tp_group', return_value=mock_dp_and_tp_group(mocker)), \
patch('vllm.distributed.parallel_state.get_tp_group', return_value=mock_dp_and_tp_group(mocker)), \
patch('vllm_ascend.ops.fused_moe.get_dp_group', return_value=mock_dp_and_tp_group(mocker)), \
patch('torch.distributed.all_gather', return_value=MagicMock(return_value=torch.randn(10,32))), \
patch('torch.distributed.all_to_all_single', return_value=torch.randn(8, 32)), \
patch('vllm_ascend.ops.fused_moe.tensor_model_parallel_all_reduce',
return_value=torch.randn(5, 32)), \
patch('vllm_ascend.ops.fused_moe.data_parallel_reduce_scatter',
return_value=torch.randn(5, 32)), \
patch('vllm.model_executor.layers.fused_moe.config.get_dp_group',
return_value=mock_dp_and_tp_group(mocker)), \
patch('vllm_ascend.ops.fused_moe.get_ascend_config',
return_value=MagicMock(
torchair_graph_config=MagicMock(enabled=False, enable_multistream_moe=False),
expert_map_path=None
)), \
patch('vllm_ascend.ops.fused_moe.determine_expert_map',
return_value=(3, torch.tensor([0, 1, 2, -1, -1, -1, -1, -1]))), \
patch('vllm_ascend.ops.fused_moe.get_forward_context',
return_value=MagicMock(
attn_metadata=MagicMock(max_num_tokens_across_dp=10),
dp_metadata=MagicMock(cu_tokens_across_dp_cpu=[5, 10])
)), \
patch('vllm_ascend.ops.fused_moe.get_current_vllm_config',
return_value=MagicMock(
parallel_config=MagicMock(tensor_parallel_size=2),
scheduler_config=MagicMock(max_num_seqs=4),
model_config=MagicMock(max_model_len=2048)
)):
yield


@pytest.fixture
def mock_moe_env(mocker: MockerFixture):
# init moe env patch

with patch('torch_npu.npu_moe_gating_top_k', return_value=(
torch.randn(8, 2),
torch.randint(0, 8, (8, 2)),
None
)), \
patch('torch_npu.npu_moe_init_routing', return_value=(
torch.randn(8, 2),
torch.randint(0, 8, (8, 2)),
torch.tensor([0, 1, 2, 4, 6, 2, 7, 1])
)), \
patch("torch_npu.npu_moe_compute_expert_tokens", return_value=(
torch.randn(8, 2)
)), \
patch("torch_npu.npu_moe_distribute_dispatch", return_value=(
torch.randn(16, 2)
)), \
patch("torch_npu.npu_moe_distribute_combine", return_value=(
torch.randn(16, 2)
)), \
patch("torch_npu.npu_grouped_matmul", return_value=(
(torch.randn(8, 2), torch.randn(8, 2))
)), \
patch("torch_npu.npu_swiglu", return_value=(
torch.randn(16, 2)
)), \
patch("torch_npu.npu_moe_gating_top_k_softmax", return_value=(
torch.randn(8, 2),
torch.randint(0, 8, (8, 2)),
torch.tensor([0, 1, 2, 4, 6, 2, 7, 1])
)), \
patch("torch_npu.npu_moe_finalize_routing", return_value=(
torch.randn(16, 2)
)):
yield


@pytest.fixture
def default_moe_config():
"""default moe config"""
return {
'num_experts': 8,
'top_k': 2,
'hidden_size': 512,
'intermediate_size': 1024
}


@pytest.fixture
def moe_method(mock_dist_env):
moe = MagicMock()
moe.moe_parallel_config.return_value = MagicMock(ep_size=4)
return AscendUnquantizedFusedMoEMethod(moe)


class Device(TypedDict):
device_id: int
device_expert: List[int]


class Layer(TypedDict):
layer_id: int
device_count: int
device_list: List[Device]


class MockData(TypedDict):
moe_layer_count: int
layer_list: List[Layer]


class MockQuantMethod(nn.Module):

def __init__(self, shared_experts, num_tokens):
super().__init__()
if shared_experts:
self.apply = MagicMock(return_value=(torch.randn(num_tokens, 32),
torch.randn(num_tokens, 10)))
else:
self.apply = MagicMock(return_value=(torch.randn(num_tokens, 32)))


class TestAscendFusedMoe:

def test_init_no_quant(self, mock_dist_env, default_moe_config):
layer = AscendFusedMoE(**default_moe_config)

layer.w13_weight = nn.Parameter(
torch.randn(default_moe_config['num_experts'],
default_moe_config['intermediate_size'] * 2,
default_moe_config['hidden_size']))
layer.w2_weight = nn.Parameter(
torch.randn(default_moe_config['num_experts'],
default_moe_config['hidden_size'],
default_moe_config['intermediate_size']))

assert layer.num_experts == default_moe_config['num_experts']
assert layer.top_k == default_moe_config['top_k']
assert hasattr(layer, 'w13_weight')
assert hasattr(layer, 'w2_weight')
assert layer.moe_instance_id == 0

# check group_topk
with pytest.raises(AssertionError):
error_config = default_moe_config.copy()
error_config['use_grouped_topk'] = True
layer = AscendFusedMoE(**error_config)

# check scoring_func
with pytest.raises(ValueError):
error_config = default_moe_config.copy()
error_config['scoring_func'] = "random"
layer = AscendFusedMoE(**error_config)

def test_init_with_quant(self, mock_dist_env, default_moe_config):
mock_quant_config = MagicMock()
mock_quant_method = MagicMock()
mock_quant_config.get_quant_method.return_value = mock_quant_method

moe = AscendFusedMoE(**default_moe_config,
quant_config=mock_quant_config)

assert moe.quant_method is not None
assert moe.quant_method == mock_quant_method

@pytest.mark.parametrize(
"others_param",
[[None,
MagicMock(return_value=torch.randn(5, 32)), False, 5, None],
[2, None, False, 5, None], [None, None, True, 5, None],
[None, None, False, 1, None], [None, None, True, 5, 1],
[None, None, False, 5, 1]])
def test_forward(self, mock_dist_env, default_moe_config, others_param):
"""
1 test has shared_experts
2 test has top_k
3 test is_prefill is true
4 test single num_tokens(decode)
5 test ep_size is 1 and is_prefill is true
6 test ep_size is 1 and is_prefill is False
"""
top_k, shared_experts, is_prefill, num_tokens, ep_size = others_param
inputs = torch.randn(num_tokens, 32)
router_logits = torch.randn(num_tokens, 8)
moe = AscendFusedMoE(**default_moe_config)

if ep_size == 1:
moe.moe_parallel_config.ep_size = 1

moe.quant_method = MockQuantMethod(shared_experts, num_tokens)
output = moe.forward(inputs,
router_logits,
is_prefill=is_prefill,
top_k=top_k,
shared_experts=shared_experts)

moe.quant_method.apply.assert_called_once()

if shared_experts:
assert output[0].shape == (num_tokens, 32)
assert output[1].shape == (num_tokens, 10)
else:
assert output.shape == (num_tokens, 32)

def test_forward_ms_fused_moe_comp(self, mock_dist_env,
default_moe_config):
inputs = torch.randn(5, 32)
router_logits = torch.randn(5, 8)
moe = AscendFusedMoE(**default_moe_config)

moe.quant_method = MockQuantMethod(None, 5)
output = moe._forward_ms_fused_moe_comp(inputs,
router_logits,
is_prefill=False,
real_top_k=1)

moe.quant_method.apply.assert_called_once()

assert output.shape == (5, 32)


class TestAscendUnquantizedFusedMoEMethod:

def test_process_weights_after_loading(self, moe_method, mock_dist_env):
layer = MagicMock()
layer.w13_weight.data = torch.randn(16, 32)
layer.w2_weight.data = torch.randn(16, 32)

moe_method.process_weights_after_loading(layer)

assert isinstance(layer.w13_weight, torch.nn.Parameter)
assert isinstance(layer.w2_weight, torch.nn.Parameter)
assert not layer.w13_weight.requires_grad
assert not layer.w2_weight.requires_grad

@pytest.mark.parametrize(
"others_param",
[[256, 4, False], [128, 1, False], [128, 1, True], [128, 4, False]])
def test_apply_without_expert_map(self, moe_method, mock_dist_env,
mock_moe_env, others_param):
"""
1 test is_deepseek_v3_r1=true and use fused_expters_with_all2all
2 test use_select_experts and fused_experts
3 test use select_gating_topk_softmax_experts and fused_experts
4 test use select_experts and fused_experts_with_all2all_buffer
"""
global_num_experts, ep_size, select_softmax = others_param
with patch(
"vllm_ascend.ops.fused_moe.SELECT_GATING_TOPK_SOTFMAX_EXPERTS",
Copy link
Preview

Copilot AI Jul 23, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is a typo in 'SOTFMAX_EXPERTS'. It should be 'SOFTMAX_EXPERTS'.

Suggested change
"vllm_ascend.ops.fused_moe.SELECT_GATING_TOPK_SOTFMAX_EXPERTS",
"vllm_ascend.ops.fused_moe.SELECT_GATING_TOPK_SOFTMAX_EXPERTS",

Copilot uses AI. Check for mistakes.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

origin param is wrong spelling

select_softmax):
moe_method.ep_size = ep_size
x = torch.randn(8, 2, 2)
router_logits = torch.randn(8, 8)
layer = MagicMock()
layer.w13_weight = torch.randn(8, 16, 1)
layer.w2_weight = torch.randn(16, 8, 1)
result = moe_method.apply(layer=layer,
x=x,
router_logits=router_logits,
top_k=2,
renormalize=True,
global_num_experts=global_num_experts,
is_prefill=False)

if ep_size == 1:
assert result.shape == (16, 2)
else:
assert result.shape == x.shape

@pytest.mark.parametrize("others_param",
[[16, False], [1, True], [1, False], [4, False]])
def test_apply_with_expert_map(self, moe_method, mock_dist_env,
mock_moe_env, others_param):
"""
1 test use_select_experts and use fused_expters_with_mc2
2 test use_select_experts and fused_experts_with_all2all_buffer
3 test use_select_experts and fused_experts_with_all2all
4 test use_select_experts and fused_experts
"""
ep_size, alltoall_buffer = others_param
with patch("vllm_ascend.ops.fused_moe.MOE_ALL2ALL_BUFFER",
alltoall_buffer):
expert_map = torch.tensor([0, 1, 2, -1, -1, -1, -1, -1])
moe_method.ep_size = ep_size
x = torch.randn(8, 2, 2)
if ep_size == 1:
x = x.view(-1, 2)
router_logits = torch.randn(8, 8)
if alltoall_buffer:
moe_method.max_model_len = 1
layer = MagicMock()
layer.w13_weight = torch.randn(8, 16, 1)
layer.w2_weight = torch.randn(16, 8, 1)
result = moe_method.apply(layer=layer,
x=x,
router_logits=router_logits,
top_k=2,
renormalize=True,
global_num_experts=128,
expert_map=expert_map,
is_prefill=False)

if ep_size == 16 or ep_size == 1:
assert result.shape == (16, 2)
else:
assert result.shape == x.shape
Loading