-
Notifications
You must be signed in to change notification settings - Fork 408
add ut of fused_moe.py #1930
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
add ut of fused_moe.py #1930
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,356 @@ | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# This file is a part of the vllm-ascend project. | ||
# | ||
from typing import List, TypedDict | ||
from unittest.mock import MagicMock, patch | ||
|
||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
from pytest_mock import MockerFixture | ||
|
||
from vllm_ascend.ops.fused_moe import (AscendFusedMoE, | ||
AscendUnquantizedFusedMoEMethod) | ||
from vllm_ascend.utils import adapt_patch # noqa E402 | ||
|
||
adapt_patch(True) | ||
|
||
|
||
def mock_ep_group(mocker): | ||
mock_group = mocker.MagicMock() | ||
mock_group.rank_in_group = 0 | ||
mock_group.rank = 0 | ||
mock_group.world_size = 4 | ||
mock_group.device_group = "mock_group_ep" | ||
mock_group.all_to_all = MagicMock(return_value=torch.randn(8, 8)) | ||
return mock_group | ||
|
||
|
||
def mock_dp_and_tp_group(mocker): | ||
mock_group = mocker.MagicMock() | ||
mock_group.rank_in_group = 0 | ||
mock_group.world_size = 2 | ||
mock_group.device_group = "mock_group" | ||
mock_group.all_gather = MagicMock(return_value=torch.randn(10, 32)) | ||
return mock_group | ||
|
||
|
||
@pytest.fixture | ||
def mock_dist_env(mocker: MockerFixture): | ||
# init dist env patch | ||
|
||
with patch('torch.distributed.get_rank', return_value=0), \ | ||
patch('torch.distributed.get_world_size', return_value=4), \ | ||
patch('vllm_ascend.ops.fused_moe.get_ep_group', return_value=mock_ep_group(mocker)), \ | ||
patch('vllm_ascend.ops.fused_moe.get_tp_group', return_value=mock_dp_and_tp_group(mocker)), \ | ||
patch('vllm.distributed.parallel_state.get_tp_group', return_value=mock_dp_and_tp_group(mocker)), \ | ||
patch('vllm_ascend.ops.fused_moe.get_dp_group', return_value=mock_dp_and_tp_group(mocker)), \ | ||
patch('torch.distributed.all_gather', return_value=MagicMock(return_value=torch.randn(10,32))), \ | ||
patch('torch.distributed.all_to_all_single', return_value=torch.randn(8, 32)), \ | ||
patch('vllm_ascend.ops.fused_moe.tensor_model_parallel_all_reduce', | ||
return_value=torch.randn(5, 32)), \ | ||
patch('vllm_ascend.ops.fused_moe.data_parallel_reduce_scatter', | ||
return_value=torch.randn(5, 32)), \ | ||
patch('vllm.model_executor.layers.fused_moe.config.get_dp_group', | ||
return_value=mock_dp_and_tp_group(mocker)), \ | ||
patch('vllm_ascend.ops.fused_moe.get_ascend_config', | ||
return_value=MagicMock( | ||
torchair_graph_config=MagicMock(enabled=False, enable_multistream_moe=False), | ||
expert_map_path=None | ||
)), \ | ||
patch('vllm_ascend.ops.fused_moe.determine_expert_map', | ||
return_value=(3, torch.tensor([0, 1, 2, -1, -1, -1, -1, -1]))), \ | ||
patch('vllm_ascend.ops.fused_moe.get_forward_context', | ||
return_value=MagicMock( | ||
attn_metadata=MagicMock(max_num_tokens_across_dp=10), | ||
dp_metadata=MagicMock(cu_tokens_across_dp_cpu=[5, 10]) | ||
)), \ | ||
patch('vllm_ascend.ops.fused_moe.get_current_vllm_config', | ||
return_value=MagicMock( | ||
parallel_config=MagicMock(tensor_parallel_size=2), | ||
scheduler_config=MagicMock(max_num_seqs=4), | ||
model_config=MagicMock(max_model_len=2048) | ||
)): | ||
yield | ||
|
||
|
||
@pytest.fixture | ||
def mock_moe_env(mocker: MockerFixture): | ||
# init moe env patch | ||
|
||
with patch('torch_npu.npu_moe_gating_top_k', return_value=( | ||
torch.randn(8, 2), | ||
torch.randint(0, 8, (8, 2)), | ||
None | ||
)), \ | ||
patch('torch_npu.npu_moe_init_routing', return_value=( | ||
torch.randn(8, 2), | ||
torch.randint(0, 8, (8, 2)), | ||
torch.tensor([0, 1, 2, 4, 6, 2, 7, 1]) | ||
)), \ | ||
patch("torch_npu.npu_moe_compute_expert_tokens", return_value=( | ||
torch.randn(8, 2) | ||
)), \ | ||
patch("torch_npu.npu_moe_distribute_dispatch", return_value=( | ||
torch.randn(16, 2) | ||
)), \ | ||
patch("torch_npu.npu_moe_distribute_combine", return_value=( | ||
torch.randn(16, 2) | ||
)), \ | ||
patch("torch_npu.npu_grouped_matmul", return_value=( | ||
(torch.randn(8, 2), torch.randn(8, 2)) | ||
)), \ | ||
patch("torch_npu.npu_swiglu", return_value=( | ||
torch.randn(16, 2) | ||
)), \ | ||
patch("torch_npu.npu_moe_gating_top_k_softmax", return_value=( | ||
torch.randn(8, 2), | ||
torch.randint(0, 8, (8, 2)), | ||
torch.tensor([0, 1, 2, 4, 6, 2, 7, 1]) | ||
)), \ | ||
patch("torch_npu.npu_moe_finalize_routing", return_value=( | ||
torch.randn(16, 2) | ||
)): | ||
yield | ||
|
||
|
||
@pytest.fixture | ||
def default_moe_config(): | ||
"""default moe config""" | ||
return { | ||
'num_experts': 8, | ||
'top_k': 2, | ||
'hidden_size': 512, | ||
'intermediate_size': 1024 | ||
} | ||
|
||
|
||
@pytest.fixture | ||
def moe_method(mock_dist_env): | ||
moe = MagicMock() | ||
moe.moe_parallel_config.return_value = MagicMock(ep_size=4) | ||
return AscendUnquantizedFusedMoEMethod(moe) | ||
|
||
|
||
class Device(TypedDict): | ||
device_id: int | ||
device_expert: List[int] | ||
|
||
|
||
class Layer(TypedDict): | ||
layer_id: int | ||
device_count: int | ||
device_list: List[Device] | ||
|
||
|
||
class MockData(TypedDict): | ||
moe_layer_count: int | ||
layer_list: List[Layer] | ||
|
||
|
||
class MockQuantMethod(nn.Module): | ||
|
||
def __init__(self, shared_experts, num_tokens): | ||
super().__init__() | ||
if shared_experts: | ||
self.apply = MagicMock(return_value=(torch.randn(num_tokens, 32), | ||
torch.randn(num_tokens, 10))) | ||
else: | ||
self.apply = MagicMock(return_value=(torch.randn(num_tokens, 32))) | ||
|
||
|
||
class TestAscendFusedMoe: | ||
|
||
def test_init_no_quant(self, mock_dist_env, default_moe_config): | ||
layer = AscendFusedMoE(**default_moe_config) | ||
|
||
layer.w13_weight = nn.Parameter( | ||
torch.randn(default_moe_config['num_experts'], | ||
default_moe_config['intermediate_size'] * 2, | ||
default_moe_config['hidden_size'])) | ||
layer.w2_weight = nn.Parameter( | ||
torch.randn(default_moe_config['num_experts'], | ||
default_moe_config['hidden_size'], | ||
default_moe_config['intermediate_size'])) | ||
|
||
assert layer.num_experts == default_moe_config['num_experts'] | ||
assert layer.top_k == default_moe_config['top_k'] | ||
assert hasattr(layer, 'w13_weight') | ||
assert hasattr(layer, 'w2_weight') | ||
assert layer.moe_instance_id == 0 | ||
|
||
# check group_topk | ||
with pytest.raises(AssertionError): | ||
error_config = default_moe_config.copy() | ||
error_config['use_grouped_topk'] = True | ||
layer = AscendFusedMoE(**error_config) | ||
|
||
# check scoring_func | ||
with pytest.raises(ValueError): | ||
error_config = default_moe_config.copy() | ||
error_config['scoring_func'] = "random" | ||
layer = AscendFusedMoE(**error_config) | ||
|
||
def test_init_with_quant(self, mock_dist_env, default_moe_config): | ||
mock_quant_config = MagicMock() | ||
mock_quant_method = MagicMock() | ||
mock_quant_config.get_quant_method.return_value = mock_quant_method | ||
|
||
moe = AscendFusedMoE(**default_moe_config, | ||
quant_config=mock_quant_config) | ||
|
||
assert moe.quant_method is not None | ||
assert moe.quant_method == mock_quant_method | ||
|
||
@pytest.mark.parametrize( | ||
"others_param", | ||
[[None, | ||
MagicMock(return_value=torch.randn(5, 32)), False, 5, None], | ||
[2, None, False, 5, None], [None, None, True, 5, None], | ||
[None, None, False, 1, None], [None, None, True, 5, 1], | ||
[None, None, False, 5, 1]]) | ||
def test_forward(self, mock_dist_env, default_moe_config, others_param): | ||
""" | ||
1 test has shared_experts | ||
2 test has top_k | ||
3 test is_prefill is true | ||
4 test single num_tokens(decode) | ||
5 test ep_size is 1 and is_prefill is true | ||
6 test ep_size is 1 and is_prefill is False | ||
""" | ||
top_k, shared_experts, is_prefill, num_tokens, ep_size = others_param | ||
inputs = torch.randn(num_tokens, 32) | ||
router_logits = torch.randn(num_tokens, 8) | ||
moe = AscendFusedMoE(**default_moe_config) | ||
|
||
if ep_size == 1: | ||
moe.moe_parallel_config.ep_size = 1 | ||
|
||
moe.quant_method = MockQuantMethod(shared_experts, num_tokens) | ||
output = moe.forward(inputs, | ||
router_logits, | ||
is_prefill=is_prefill, | ||
top_k=top_k, | ||
shared_experts=shared_experts) | ||
|
||
moe.quant_method.apply.assert_called_once() | ||
|
||
if shared_experts: | ||
assert output[0].shape == (num_tokens, 32) | ||
assert output[1].shape == (num_tokens, 10) | ||
else: | ||
assert output.shape == (num_tokens, 32) | ||
|
||
def test_forward_ms_fused_moe_comp(self, mock_dist_env, | ||
default_moe_config): | ||
inputs = torch.randn(5, 32) | ||
router_logits = torch.randn(5, 8) | ||
moe = AscendFusedMoE(**default_moe_config) | ||
|
||
moe.quant_method = MockQuantMethod(None, 5) | ||
output = moe._forward_ms_fused_moe_comp(inputs, | ||
router_logits, | ||
is_prefill=False, | ||
real_top_k=1) | ||
|
||
moe.quant_method.apply.assert_called_once() | ||
|
||
assert output.shape == (5, 32) | ||
|
||
|
||
class TestAscendUnquantizedFusedMoEMethod: | ||
|
||
def test_process_weights_after_loading(self, moe_method, mock_dist_env): | ||
layer = MagicMock() | ||
layer.w13_weight.data = torch.randn(16, 32) | ||
layer.w2_weight.data = torch.randn(16, 32) | ||
|
||
moe_method.process_weights_after_loading(layer) | ||
|
||
assert isinstance(layer.w13_weight, torch.nn.Parameter) | ||
assert isinstance(layer.w2_weight, torch.nn.Parameter) | ||
assert not layer.w13_weight.requires_grad | ||
assert not layer.w2_weight.requires_grad | ||
|
||
@pytest.mark.parametrize( | ||
"others_param", | ||
[[256, 4, False], [128, 1, False], [128, 1, True], [128, 4, False]]) | ||
def test_apply_without_expert_map(self, moe_method, mock_dist_env, | ||
mock_moe_env, others_param): | ||
""" | ||
1 test is_deepseek_v3_r1=true and use fused_expters_with_all2all | ||
2 test use_select_experts and fused_experts | ||
3 test use select_gating_topk_softmax_experts and fused_experts | ||
4 test use select_experts and fused_experts_with_all2all_buffer | ||
""" | ||
global_num_experts, ep_size, select_softmax = others_param | ||
with patch( | ||
"vllm_ascend.ops.fused_moe.SELECT_GATING_TOPK_SOTFMAX_EXPERTS", | ||
select_softmax): | ||
moe_method.ep_size = ep_size | ||
x = torch.randn(8, 2, 2) | ||
router_logits = torch.randn(8, 8) | ||
layer = MagicMock() | ||
layer.w13_weight = torch.randn(8, 16, 1) | ||
layer.w2_weight = torch.randn(16, 8, 1) | ||
result = moe_method.apply(layer=layer, | ||
x=x, | ||
router_logits=router_logits, | ||
top_k=2, | ||
renormalize=True, | ||
global_num_experts=global_num_experts, | ||
is_prefill=False) | ||
|
||
if ep_size == 1: | ||
assert result.shape == (16, 2) | ||
else: | ||
assert result.shape == x.shape | ||
|
||
@pytest.mark.parametrize("others_param", | ||
[[16, False], [1, True], [1, False], [4, False]]) | ||
def test_apply_with_expert_map(self, moe_method, mock_dist_env, | ||
mock_moe_env, others_param): | ||
""" | ||
1 test use_select_experts and use fused_expters_with_mc2 | ||
2 test use_select_experts and fused_experts_with_all2all_buffer | ||
3 test use_select_experts and fused_experts_with_all2all | ||
4 test use_select_experts and fused_experts | ||
""" | ||
ep_size, alltoall_buffer = others_param | ||
with patch("vllm_ascend.ops.fused_moe.MOE_ALL2ALL_BUFFER", | ||
alltoall_buffer): | ||
expert_map = torch.tensor([0, 1, 2, -1, -1, -1, -1, -1]) | ||
moe_method.ep_size = ep_size | ||
x = torch.randn(8, 2, 2) | ||
if ep_size == 1: | ||
x = x.view(-1, 2) | ||
router_logits = torch.randn(8, 8) | ||
if alltoall_buffer: | ||
moe_method.max_model_len = 1 | ||
layer = MagicMock() | ||
layer.w13_weight = torch.randn(8, 16, 1) | ||
layer.w2_weight = torch.randn(16, 8, 1) | ||
result = moe_method.apply(layer=layer, | ||
x=x, | ||
router_logits=router_logits, | ||
top_k=2, | ||
renormalize=True, | ||
global_num_experts=128, | ||
expert_map=expert_map, | ||
is_prefill=False) | ||
|
||
if ep_size == 16 or ep_size == 1: | ||
assert result.shape == (16, 2) | ||
else: | ||
assert result.shape == x.shape |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There is a typo in 'SOTFMAX_EXPERTS'. It should be 'SOFTMAX_EXPERTS'.
Copilot uses AI. Check for mistakes.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
origin param is wrong spelling