-
Notifications
You must be signed in to change notification settings - Fork 39
Андрей Зернюк #47
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Андрей Зернюк #47
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,83 @@ | ||
| import numpy as np | ||
| import matplotlib.pyplot as plt | ||
| import matplotlib.animation as animation | ||
|
|
||
| G = 6.67 * 10 | ||
| dt = 0.01 | ||
| time = 10 | ||
| steps = int(time / dt) | ||
| FPS = 50 | ||
|
|
||
| class space_object(): | ||
| def __init__(self, mass: float, radius_vector: np.array, velocity: np.array, size=1, color='black'): | ||
| self.mass = mass | ||
| self.radius_vector = radius_vector | ||
| self.size = size | ||
| self.color = color | ||
| self.velocity = velocity | ||
| self.acceleration = 0 | ||
|
|
||
| def update_radius_vector(self): | ||
| self.radius_vector = self.radius_vector + dt * self.velocity + dt * dt * self.acceleration / 2 | ||
| self.acceleration = 0 | ||
| def update_velocity(self): | ||
| self.velocity = self.velocity + self.acceleration * dt | ||
|
|
||
| def update_acceleration(self, body): | ||
| R=body.radius_vector - self.radius_vector | ||
| self.acceleration = ((G * body.mass * R))/ pow(np.dot(R,R), 3 / 2) | ||
| def iteration(self, space_objects): | ||
| for space_object in space_objects: | ||
| if space_object == self: | ||
| continue | ||
| self.update_acceleration(space_object) | ||
| self.update_velocity() | ||
| self.update_radius_vector() | ||
| return self.radius_vector | ||
|
|
||
|
|
||
| def create_2space_objects(): | ||
| small_object = space_object(0.001, np.array([0., 0., 20.]), np.array([0., 70., 0.])) | ||
| big_object = space_object(1000, np.array([0., 0., 0.]), np.array([0., 0., 0.])) | ||
| space_objects = [small_object, big_object] | ||
| return space_objects | ||
| def create_3space_objects(): | ||
| small_object1 = space_object(0.1, np.array([0., 0., 20.]), np.array([0., 750., 0.])) | ||
| small_object2 = space_object(0.1, np.array([0., 20., 0.]), np.array([750., 0., 0.])) | ||
| big_object = space_object(100000, np.array([0., 0., 0.]), np.array([0., 0., 0.])) | ||
| space_objects = [small_object1,small_object2, big_object] | ||
| return space_objects | ||
|
|
||
| def next_step(space_objects, number_of_objects): | ||
| walks = np.array([0.] * number_of_objects * steps * 3).reshape(number_of_objects, steps, 3) | ||
|
|
||
| for i in range(steps): | ||
| for space_object in space_objects: | ||
| coordinates = space_object.iteration(space_objects) | ||
| walks[space_objects.index(space_object)][i] = coordinates | ||
| return walks | ||
|
|
||
| def update_lines(num, walks, lines): | ||
| for line, walk in zip(lines, walks): | ||
| line.set_data(walk[:num, :2].T) | ||
| line.set_3d_properties(walk[:num, 2]) | ||
| return lines | ||
|
|
||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| objects = create_2space_objects() | ||
|
|
||
| number_of_objects = len(objects) | ||
| walks = next_step(objects, number_of_objects) | ||
| fig = plt.figure() | ||
| ax =fig.add_subplot(projection="3d") | ||
| lines = [ax.plot([], [], [])[0] for i in walks] | ||
|
|
||
|
|
||
| ax.set(xlim3d=(-50, 50), xlabel='X') | ||
| ax.set(ylim3d=(-50, 50), ylabel='Y') | ||
| ax.set(zlim3d=(-50, 50), zlabel='Z') | ||
| print(walks) | ||
| ani = animation.FuncAnimation(fig, update_lines, steps, fargs=(walks, lines), interval=1) | ||
| plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,75 @@ | ||
| import numpy as np | ||
| import scipy.special as sci | ||
| from decimal import Decimal, getcontext | ||
| import matplotlib.pyplot as plt | ||
|
|
||
| getcontext().prec = 4 | ||
|
|
||
|
|
||
| def toDecimalArray(arr_): | ||
| return np.asarray([Decimal(x) for x in arr_]) | ||
|
|
||
|
|
||
| def poisson(L, n): | ||
| if L < 0: | ||
| raise ValueError('L меньше 0') | ||
| L_ = Decimal(L) | ||
| npArr = toDecimalArray(sci.factorial(np.array(n, dtype=np.int64))) | ||
| return toDecimalArray(np.power(L_, n)) * np.exp(-L_) / npArr | ||
|
|
||
|
|
||
| def Moment(n, p, k): | ||
| if type(n) != np.ndarray or type(k) != int: | ||
| raise ValueError('n must be array and k must be int') | ||
| return np.sum(toDecimalArray(np.power(n, k) * p)) | ||
|
|
||
|
|
||
| def Mean(n, p): | ||
| Mean = Moment(n, p, 1) | ||
| return Mean | ||
|
|
||
|
|
||
| def Variance(n, p): | ||
| item = n - Mean(n, p) | ||
| Variance = (Moment(item, p, 2)) | ||
| return Decimal(Variance) | ||
|
|
||
|
|
||
| def Compare(x, L, error): | ||
| if abs(x - L) < error: | ||
| print('exceed') | ||
| else: | ||
| print('not exceed') | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| print('L is ') | ||
| # L=int(input()) | ||
| L = 50 | ||
| print(L) | ||
| print('N is ') | ||
| # N=int(input()) | ||
| N = 100 | ||
| print(N) | ||
| print('Enter k: ') | ||
| # k = int(input()) | ||
| k = 4 | ||
| print('N is ') | ||
| print(k) | ||
| n = toDecimalArray(np.arange(0, N + 1, dtype='float64')) | ||
| p = toDecimalArray(poisson(L, n)) | ||
| print('Moment is: ', Moment(n, p, k)) | ||
| print('Mean is: ', Mean(n, p)) | ||
| print('Variance is: ', Variance(n, p)) | ||
|
|
||
| Compare(Mean(n, p), L, 0.0001) | ||
| Compare(Variance(n, p), L, 0.0001) | ||
|
|
||
| plt.plot(poisson(1, n), color='b') | ||
| plt.plot(poisson(20, n), color='m') | ||
| plt.plot(poisson(30, n), color='c') | ||
| plt.plot(poisson(50, n), color='b') | ||
| plt.xlabel('$x$') | ||
| plt.ylabel('$f(x)$') | ||
| plt.grid(True) | ||
| plt.show() | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
непозволительно плохо написано
нужно переписывать
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
согласен, эта строчка кода ужасна