Skip to content

CANN: Add ggml_set_rows #14943

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 29, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 122 additions & 32 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,8 @@
#include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_zero.h>
#include <aclnnop/aclnn_index_copy.h>
#include <aclnnop/aclnn_index_select.h>
#include <float.h>

#include <cmath>
Expand Down Expand Up @@ -1614,50 +1616,97 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}

/**
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
* @brief Performs index select operation on a 4D tensor using the CANN backend.
*
* This function extracts slices from the source tensor (`src_buffer`),
* index tensor (`index`), and destination tensor (`dst`), and performs an
* embedding operation on them. The embedding operation is applied by iterating
* over the last two dimensions of the source tensor, creating the necessary
* tensors for the source, index, and output, and executing the embedding operation.
* This function applies the `IndexSelect` operation along a specific dimension
* of the source tensor (`src_buffer`) using the indices from the index tensor (`index`).
* It iterates over the last two dimensions of the source tensor, creates the corresponding
* CANN tensors for the source, index, and output slices, and executes the `IndexSelect`
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer holding the data for the source tensor.
* @param src_buffer The source buffer containing the 4D input tensor data.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param index The index tensor used in the embedding operation.
* @param dst The destination tensor where the result will be stored.
* @param dst_buffer The destination buffer where the output tensor data will be written.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying the indices to select from the source tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
ggml_tensor* dst) {
static void aclnn_index_select_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_src_ne, acl_src_nb, 2);
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);

// index
int64_t acl_index_ne[1] = {index->ne[0]};
size_t acl_index_nb[1] = {index->nb[0]};
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + i * index->nb[2] + j * index->nb[1],
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
acl_index_ne, acl_index_nb, 1);
index->ne, index->nb, 1);

// out
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_out_ne, acl_out_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Embedding, acl_src_tensor, acl_index, acl_out);
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
}

/**
* @brief Performs inplace index copy operation on a 4D tensor using the CANN backend.
*
* This function applies the `IndexCopy` operation along a specific dimension of the
* destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`)
* to positions specified by the index tensor (`index`).
* It iterates over the last two dimensions of the tensors, creates the corresponding
* CANN tensors for source, index, and destination slices, and performs the index copy
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer containing the 4D input tensor data to be copied.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param dst_buffer The destination buffer where values will be copied to.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying target positions in the destination tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);

// index
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
index->ne, index->nb, 1);

// out
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
Expand All @@ -1669,8 +1718,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {

switch (src0->type) {
case GGML_TYPE_F32: {
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
dst);
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
Expand All @@ -1687,8 +1737,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
src_trans_nb, src1, dst);
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
Expand Down Expand Up @@ -1748,8 +1799,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
}

aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb, src1, dst);
aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);

ggml_cann_release_resources(ctx, dequant_tensor);
break;
Expand All @@ -1760,6 +1813,43 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
}

void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // src
ggml_tensor* src1 = dst->src[1]; // index

switch (dst->type) {
case GGML_TYPE_F32: {
aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
default:
GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS");
break;
}
}

/**
* @brief Repeats elements of a tensor along a specified dimension.
*
Expand Down
16 changes: 13 additions & 3 deletions ggml/src/ggml-cann/aclnn_ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -424,15 +424,25 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @details This function retrieves rows from a source tensor src0 according to
* the indices provided in another tensor src1 and stores the result in
* a destination tensor (\p dst). It supports different data types
* including F32, F16, Q4_0, and Q8_0.
* a destination tensor (\p dst).
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored.
* dst->op is `GGML_OP_GET_ROWS`.
*/
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Writes specific rows into a tensor at positions specified by indices.
*
* @details This function copies rows from a source tensor into a destination
* tensor (\p dst) at the positions indicated by the indices in another
* tensor.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the specified rows will be updated.
*/
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Executes matrix multiplication for the given tensor.
*
Expand Down
19 changes: 12 additions & 7 deletions ggml/src/ggml-cann/ggml-cann.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1659,6 +1659,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_GET_ROWS:
ggml_cann_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_cann_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cann_dup(ctx, dst);
break;
Expand Down Expand Up @@ -2191,13 +2194,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
} break;
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
#pragma message("TODO: implement F32, F16, BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return false;
} break;
case GGML_OP_SET_ROWS: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
default:
return false;
}
} break;
case GGML_OP_CPY: {
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
Expand Down
Loading