Skip to content

Arm backend: Add addmm decomposition pass and test #12668

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/arm/_passes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
from .convert_to_clamp import ConvertToClampPass # noqa
from .decompose_acosh_pass import DecomposeAcoshPass # noqa
from .decompose_adaptive_avg_pool2d_pass import DecomposeAdaptiveAvgPool2dPass # noqa
from .decompose_addmm_pass import DecomposeAddmmPass # noqa
from .decompose_asin_pass import DecomposeAsinPass # noqa
from .decompose_atan_pass import DecomposeAtanPass # noqa
from .decompose_atanh_pass import DecomposeAtanhPass # noqa
Expand Down
3 changes: 3 additions & 0 deletions backends/arm/_passes/arm_pass_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
ConvertToClampPass,
DecomposeAcoshPass,
DecomposeAdaptiveAvgPool2dPass,
DecomposeAddmmPass,
DecomposeAsinPass,
DecomposeAtanhPass,
DecomposeAtanPass,
Expand Down Expand Up @@ -165,6 +166,7 @@ def _tosa_080_MI_pipeline(self, exported_program: ExportedProgram) -> GraphModul
self.add_pass(DecomposeSqrtPass())
self.add_pass(DecomposeAtanPass())
self.add_pass(DecomposeAtanhPass())
self.add_pass(DecomposeAddmmPass())
self.add_pass(ConvertIntPowToMuls())
self.add_pass(CastBoolToInt8Pass())
self.add_pass(DecomposeSinhPass())
Expand Down Expand Up @@ -257,6 +259,7 @@ def transform_for_annotation_pipeline(self, graph_module: GraphModule):
self.add_pass(DecomposeRoundPass())
self.add_pass(CastBoolToInt8Pass())
self.add_pass(DecomposeSignPass())
self.add_pass(DecomposeAddmmPass())
self.add_pass(ReplaceScalarWithTensorArgPassTOSABI())
self.add_pass(ScalarsToAttributePass())
self.add_pass(DecomposeGroupNormPass())
Expand Down
60 changes: 60 additions & 0 deletions backends/arm/_passes/decompose_addmm_pass.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import torch

from executorch.backends.arm._passes import ArmPass
from executorch.exir.dialects._ops import ops as exir_ops


# For MI case
edge_addmm = exir_ops.edge.aten.addmm.default
# For BI case
aten_addmm = torch.ops.aten.addmm.default


def get_ops(op):
"""Returns the appropriate operator functions based on the input operator."""
if op == edge_addmm:
return (
exir_ops.edge.aten.mm.default,
exir_ops.edge.aten.mul.Scalar,
exir_ops.edge.aten.add.Tensor,
)
elif op == aten_addmm:
return (
torch.ops.aten.mm.default,
torch.ops.aten.mul.Scalar,
torch.ops.aten.add.Tensor,
)
else:
raise ValueError(f"Unsupported operator: {op}")


class DecomposeAddmmPass(ArmPass):
"""Decomposes the addmm operator into tensor multiplication and addition."""

def call_operator(self, op, args, kwargs, meta):
if op not in [edge_addmm, aten_addmm]:
return super().call_operator(op, args, kwargs, meta)

input, mat1, mat2 = args
beta = kwargs.get("beta", 1.0)
alpha = kwargs.get("alpha", 1.0)

mul_op, mul_scalar_op, add_op = get_ops(op)

mul = super().call_operator(mul_op, (mat1, mat2), {}, meta, updated=True)
mul_alpha = super().call_operator(
mul_scalar_op, (mul, alpha), {}, meta, updated=True
)

input_beta = super().call_operator(
mul_scalar_op, (input, beta), {}, meta, updated=True
)

return super().call_operator(
add_op, (mul_alpha, input_beta), {}, meta, updated=True
)
2 changes: 2 additions & 0 deletions backends/arm/operator_support/tosa_supported_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,6 +253,7 @@ def is_node_supported(
exir_ops.edge.aten.sign.default,
exir_ops.edge.aten.asin.default,
exir_ops.edge.aten.atanh.default,
exir_ops.edge.aten.addmm.default,
]

return supported
Expand Down Expand Up @@ -293,6 +294,7 @@ def is_node_supported(
exir_ops.edge.aten.div.Scalar: None,
exir_ops.edge.aten.leaky_relu.default: None,
exir_ops.edge.aten.round.default: None,
exir_ops.edge.aten.addmm.default: None,
}

if node.target in needs_decomp_dict:
Expand Down
157 changes: 157 additions & 0 deletions backends/arm/test/ops/test_addmm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import Tuple

import torch

from executorch.backends.arm.test import common
from executorch.backends.arm.test.tester.test_pipeline import (
EthosU55PipelineBI,
EthosU85PipelineBI,
TosaPipelineBI,
TosaPipelineMI,
)

aten_op = "torch.ops.aten.addmm.default"

exir_op = "executorch_exir_dialects_edge__ops_aten__addmm_default"

input_t1 = Tuple[torch.Tensor, torch.Tensor, torch.Tensor] # Input x1, x2, x3


test_data_suite = {
"basic": [
torch.tensor([[1.0, 2.0], [3.0, 4.0]]),
torch.tensor([[1.0, 0.0], [0.0, 1.0]]),
torch.tensor([[1.0, 2.0], [3.0, 4.0]]),
1.0,
1.0,
],
"zeros": [torch.zeros(2, 2), torch.zeros(2, 3), torch.zeros(3, 2), 1.0, 1.0],
"beta_only": [
torch.tensor([[10.0, 20.0], [30.0, 40.0]]),
torch.randn(2, 3),
torch.randn(3, 2),
0.0,
1.0,
],
"alpha_only": [
torch.tensor([[10.0, 20.0], [30.0, 40.0]]),
torch.randn(2, 3),
torch.randn(3, 2),
1.0,
0.0,
],
"scaled": [
torch.ones(2, 2),
torch.tensor([[1.0, 2.0], [3.0, 4.0]]),
torch.tensor([[5.0, 6.0], [7.0, 8.0]]),
0.5,
2.0,
],
"negative_scalars": [
torch.tensor([[1.0, -1.0], [-1.0, 1.0]]),
torch.tensor([[2.0, 0.0], [0.0, 2.0]]),
torch.tensor([[1.0, 1.0], [1.0, 1.0]]),
-1.0,
-1.0,
],
"non_square": [torch.ones(3, 4), torch.rand(3, 2), torch.rand(2, 4), 1.0, 1.0],
"large_values": [
torch.full((2, 2), 1e6),
torch.full((2, 3), 1e3),
torch.full((3, 2), 1e3),
1.0,
1.0,
],
"small_values": [
torch.full((2, 2), 1e-6),
torch.full((2, 3), 1e-3),
torch.full((3, 2), 1e-3),
1.0,
1.0,
],
"random": [torch.randn(4, 5), torch.randn(4, 3), torch.randn(3, 5), 1.0, 1.0],
"broadcast_bias_row": [
torch.randn(1, 2),
torch.randn(3, 4),
torch.randn(4, 2),
1.0,
1.0,
],
"row_bias": [
torch.randn(3, 1),
torch.randn(3, 4),
torch.randn(4, 4),
1.0,
1.0,
],
"scalar_bias": [
torch.tensor(2.0),
torch.randn(5, 3),
torch.randn(3, 6),
1.0,
1.0,
],
}


class Addmm(torch.nn.Module):
def forward(
self,
x1: torch.Tensor,
x2: torch.Tensor,
x3: torch.Tensor,
alpha: float,
beta: float,
) -> torch.Tensor:
return torch.addmm(x1, x2, x3, alpha=alpha, beta=beta)


@common.parametrize("test_data", test_data_suite)
def test_addmm_tosa_MI(test_data: Tuple):
pipeline = TosaPipelineMI[input_t1](
Addmm(),
(*test_data,),
aten_op=aten_op,
exir_op=exir_op,
)
pipeline.run()


@common.parametrize("test_data", test_data_suite)
def test_addmm_tosa_BI(test_data: Tuple):
pipeline = TosaPipelineBI[input_t1](
Addmm(),
(*test_data,),
aten_op=[],
exir_op=exir_op,
)
pipeline.run()


@common.XfailIfNoCorstone300
@common.parametrize("test_data", test_data_suite)
def test_addmm_u55_BI(test_data: Tuple):
pipeline = EthosU55PipelineBI[input_t1](
Addmm(),
(*test_data,),
aten_ops=[],
exir_ops=exir_op,
)
pipeline.run()


@common.XfailIfNoCorstone320
@common.parametrize("test_data", test_data_suite)
def test_addmm_u85_BI(test_data: Tuple):
pipeline = EthosU85PipelineBI[input_t1](
Addmm(),
(*test_data,),
aten_ops=[],
exir_ops=exir_op,
)
pipeline.run()
Loading