-
Notifications
You must be signed in to change notification settings - Fork 200
egress_traffic_classification_and_rewrite_test
This test validates egress traffic scheduling and packet remarking (rewrite) on a DUT. IP payload encapsulated as IPoGRE, IPoMPLSoGRE,IPoGUE or IPoMPLSoGUE would be decapsulated by DUT as per tunnel termination configuration and forwarded as an IP payload via the egress interface. IP payload should be scheduled via egress interface according to DSCP markings prior to rewrite. DSCP values of IP payload encapsulated as IPoGRE, IPoMPLSoGRE, IPoGUE or IPoMPLSoGUE should have payload DSCP values re-written per egress QOS re-write policy applied to the egress interface. Egress QOS policy should support match conditions on payload IP header fields, specifically DSCP values. Based on the match condition, DSCP must be set to a new value. DUT configuration will be evaluated against OpenConfig QOS model, and traffic flows analyzed to ensure proper scheduling, re-marking, and forwarding.
- DUT has an ingress port and 1 egress port.
| | [ ATE Port 1 ] ----- | DUT | ----- [ ATE Port 2 ] | |
- Configure DUT's ingress and egress interfaces.
It is assumed that DUT supports 8 QOS queues and use the following class mapping to code points: | FWD | Code-point | DSCP | TOS | Queue | | class | Bits | value | value | | | ————--| ---------- | ——————— | ————— | ———--- | | NC1 | 1110xx | 56 - 59 | E0-EF | NC1 | | ————--| ---------- | ——————— | ————— | ———--- | | NC1 | 1100xx | 48 - 51 | C0-CF | NC1 | | ————--| ---------- | ——————— | ————— | ———--- | | AF4 | 1000xx | 32 - 35 | 80-8F | AF4 | | ————--| ---------- | ——————— | ————— | ———--- | | AF3 | 0110xx | 24 - 27 | 60-6F | AF3 | | ————--| ---------- | ——————— | ————— | ———--- | | AF2 | 0100xx | 16 - 19 | 40-4F | AF2 | | ————--| ---------- | ——————— | ————— | ———--- | | AF1 | 0010xx | 8 - 11 | 20-2F | AF1 | | ————--| ---------- | ——————— | ————— | ———--- | | BE0 | 0001xx | 4 - 7 | 10-1F | BE1 | | ————--| ---------- | ——————— | ————— | ———--- | | BE1 | 0000xx | 0 - 3 | 00-0F | BE1 |
- DUT:Port1 is a Singleton IP interface towards ATE:Port1.
- DUT:Port2 is a Singleton IP interface towards ATE:Port2.
- DUT has egress forwarding entry in it's FIB via ATE:Port1 towards ATE:Port2: BGP routing could be used to populate FIB as follows: 3a. DUT forms one IPv4 and one IPV6 eBGP session with ATE:Port1 using connected Singleton interface IPs. 3b. DUT forms one IPv4 and one IPV6 eBGP session with ATE:Port2 using connected Singleton interface IPs. 3c. DUT has IPv4-DST-DECAP/32 and IPv6-DST-DECAP/128 advertised to ATE:Port1 via IPv4 BGP. This IP is used for decapsulation.
- ATE:Port2 advertises destination networks IPv4-DST-NET/32 and IPv6-DST-NET/128 to DUT.
- DUT decapsulates IPoGRE, IPoMPLSoGRE,IPoGUE or IPoMPLSoGUE payload with destination of IPv4-DST-DECAP/32 and IPv6-DST-DECAP/128
- DUT has MPLS static forwarding rule (aka static LSP) for label 100020 pointing to a NHG resolved via ATE:Port2.
- DUT matches packets on DSCP/TC values and sets new DSCP values based on remarking rules.
- Re-marking rules:
| Queue | TOS | TOS |
| v4 | v6 | |
|---|---|---|
| BE1 | 0 | 0 |
| ----- | --- | --- |
| AF1 | 0 | 0 |
| ----- | --- | --- |
| AF2 | 0 | 0 |
| ----- | --- | --- |
| AF3 | 0 | 0 |
| ----- | --- | --- |
| AF4 | 0 | 0 |
| ----- | --- | --- |
| NC1 | 6 | 48 |
- Traffic:
- Generate IPv4 traffic from ATE Port 1 with various DSCP values per table listed in the "Test environment setup" section.
- Verification:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues by observing queue counters per configued QOS classes.
- Capture packets on ATE Port 2 ingress to verify packet re-marking per table above.
- Analyze traffic flows to confirm no packet drops on DUT.
- Traffic:
- Generate IPv6 traffic from ATE Port 1 with various DSCP values per table listed in the "Test environment setup" section.
- Verification:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes.
- Capture packets on ATE Port 2 ingress to verify packet marking per table above.
- Analyze traffic flows, confirming no drops on DUT.
- Configuration:
- Configure Static MPLS LSP with MPLS pop and IPv4/IPv6 forward actions for a specific label 100020 via ATE Port 1.
- Configure decapsulation rules for IPv4-DST-DECAP/32
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
- Traffic:
- Generate IPoMPLSoGUE traffic from ATE Port 1 with label 100020
- Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes..
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
-
Configuration:
- Configure Static MPLS LSP with MPLS pop and IPv6 forward actions for a specific label 10020.
- Configure decapsulation rules for IPv6-DST-DECAP/12
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
-
Traffic:
- Generate IPv6oMPLSoGUE traffic from ATE Port 1 with label 100020
-
Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes.
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
-
Configuration:
- Configure Static MPLS LSP with MPLS pop and IPv4 forward actions for a specific label 100020
- Configure decapsulation rules for IPv4-DST-DECAP/32
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
-
Traffic:
- Generate IPoMPLSoGRE traffic from ATE Port 1 with label 100020
- Verfication:
- Monitor telemetry on the DUT to verify that packets re being scehduled for transmission into correct forwarding groups based on the DSCP markings of the payload prir to re-write rules
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
-
Configuration:
- Configure Static MPLS LSP with MPLS pop and IPv6 forward actions for a specific label 100020.
- Configure decapsulation rules for IPv6-DST-DECAP/12
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
-
Traffic:
- Generate IPv6oMPLSoGRE traffic from ATE Port 1 with label 100020
-
Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes.
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
-
Configuration:
- Configure decapsulation rules for IPv4-DST-DECAP/32
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
-
Traffic:
- Generate IPoGRE traffic from ATE Port 1 with IP payload dest reachable via ATE:Port2
-
Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes..
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
- Configuration:
- Configure decapsulation rules for IPv6-DST-DECAP/12
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
- Traffic:
- Generate IPv6oGRE traffic from ATE Port 1 with payload reachable via ATE:Port2
- Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes..
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
-
Configuration:ƒ
- Configure decapsulation rules for IPv4-DST-DECAP/32
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
-
Traffic:
- Generate IPoGUE traffic from ATE Port 1 with payload reachable via ATE:Port2
-
Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes.. ƒ
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
-
Configuration:
- Configure decapsulation rules for Id IPv6-DST-DECAP/12
- Configufe egress QOS re-write rules based on DSCP/TC values and set new DSCP values based on remarking rules.
-
Traffic:
- Generate IPv6oGUE traffic from ATE Port 1 with IPv6 payload reachable via ATE:Port2
-
Verfication:
- Monitor telemetry on DUT ATE Port 1 to verify packet scheduling into correct egress QOS queues based on the DSCP markings of the payload prir to re-write rules by observing queue counters per configued QOS classes.
- Capture packets on the DUT ATE Port 2 ingress interface to verify packet marking according to the marking table.
- Analyze traffic flows to confirm that no packets are dropped on the DUT.
The below yaml defines the OC paths intended to be covered by this test.
paths:
## Config paths
/qos/classifiers/classifier/config/name:
/qos/classifiers/classifier/config/type:
/qos/classifiers/classifier/terms/term/config/id:
/qos/classifiers/classifier/terms/term/actions/config/target-group:
/qos/classifiers/classifier/terms/term/conditions/ipv4/config/dscp:
/qos/classifiers/classifier/terms/term/conditions/ipv4/config/dscp-set:
/qos/classifiers/classifier/terms/term/conditions/ipv6/config/dscp:
/qos/classifiers/classifier/terms/term/conditions/ipv6/config/dscp-set:
/qos/classifiers/classifier/terms/term/conditions/mpls/config/traffic-class:
/qos/classifiers/classifier/terms/term/actions/remark/config/set-dscp:
/qos/classifiers/classifier/terms/term/actions/remark/config/set-mpls-tc:
/qos/interfaces/interface/input/classifiers/classifier/config/name:
/qos/interfaces/interface/input/classifiers/classifier/config/type:
## State paths
/qos/interfaces/interface/input/classifiers/classifier/terms/term/state/matched-packets:
/qos/interfaces/interface/input/classifiers/classifier/terms/term/state/matched-octets:
rpcs:
gnmi:
gNMI.Set:
gNMI.Subscribe:- FFF - fixed form factor
-
Home
- Test Plans
- ACCTZ-1.1: Record Subscribe Full
- ACCTZ-2.1: Record Subscribe Partial
- ACCTZ-3.1: Record Subscribe Non-gRPC
- ACCTZ-4.1: Record History Truncation
- ACCTZ-4.2: Record Payload Truncation
- ACCTZ-5.1: gNSI.acctz.v1 (Accounting) Test RecordSubscribe Idle Timeout - client becomes silent
- ACCTZ-6.1: gNSI.acctz.v1 (Accounting) Test RecordSubscribe Idle Timeout - DoA client
- ACCTZ-7.1: gNSI.acctz.v1 (Accounting) Test Accounting Authentication Failure - Multi-transaction
- ACCTZ-8.1: gNSI.acctz.v1 (Accounting) Test Accounting Authentication Failure - Uni-transaction
- ACCTZ-9.1: gNSI.acctz.v1 (Accounting) Test Accounting Privilege Escalation
- ACCTZ-10.1: gNSI.acctz.v1 (Accounting) Test Accounting Authentication Error - Multi-transaction
- ACL-1.1: ACL match based on L3/L4 fields and DSCP value
- ACL-1.2: ACL Update (Make-before-break)
- ACL-1.3: Large Scale ACL with TCAM profile
- AFT-1.1: AFTs Base
- AFT-1.2: AFTs slow collector
- AFT-1.3: AFTs collector Flap
- AFT-2.1: AFTs Prefix Counters
- AFT-3.1: AFTs Atomic Flag Check
- AFT-5.1: AFTs DUT Reboot
- attestz-1: General enrollz and attestz tests
- Authz: General Authz (1-4) tests
- BMP-1.1: BMP Session Establishment and Telemetry Test
- BMP-2.7: BMP Pre Policy Test
- BMP-2.8: BMP Post Policy Test
- bootz: General bootz bootstrap tests
- Certz-1: gNSI Client Certificate Tests
- Certz-2: Server Certificate
- Certz-3: Server Certificate Rotation
- Certz-4: Trust Bundle
- Certz-5: Trust Bundle Rotation
- CFM-1.1: CFM over ETHoCWoMPLSoGRE
- CNTR-1: Basic container lifecycle via
gnoi.Containerz. - CNTR-2: Container network connectivity tests
- CPT-1.1: Interface based ARP policer
- Credentialz-1: Password console login
- Credentialz-2: SSH Password Login Disallowed
- Credentialz-3: Host Certificates
- Credentialz-4: SSH Public Key Authentication
- Credentialz-5: Hiba Authentication
- DP-1.2: QoS policy feature config
- DP-1.3: QoS ECN feature config
- DP-1.4: QoS Interface Output Queue Counters
- DP-1.5: Egress Strict Priority scheduler with bursty traffic
- DP-1.7: One strict priority queue traffic test
- DP-1.8: Two strict priority queue traffic test
- DP-1.9: WRR traffic test
- DP-1.10: Mixed strict priority and WRR traffic test
- DP-1.11: Bursty traffic test
- DP-1.12: ECN enabled traffic test
- DP-1.13: DSCP and ECN bits are copied over during IPinIP encap and decap
- DP-1.14: QoS basic test
- DP-1.15: Egress Strict Priority scheduler
- DP-1.16: Ingress traffic classification and rewrite
- DP-1.17: DSCP Transparency with ECN
- DP-1.19: Egress traffic DSCP rewrite
- DP-2.2: QoS scheduler with 1 rate 2 color policer, classifying on next-hop group
- DP-2.4: Police traffic on input matching all packets using 1 rate, 2 color marker
- DP-2.5: Police traffic on input matching all packets using 2 rate, 3 color marker
- DP-2.6: Police traffic on input matching all packets using 2 rate, 3 color marker with classifier
- enrollz-1: enrollz test for TPM 2.0 HMAC-based Enrollment flow
- enrollz-2: enrollz test for TPM 1.2 Enrollment flow
- example-0.1: Topology Test
- FP-1.1: Power admin DOWN/UP Test
- gNMI-1.1: cli Origin
- gNMI-1.2: Benchmarking: Full Configuration Replace
- gNMI-1.3: Benchmarking: Drained Configuration Convergence Time
- gNMI-1.4: Telemetry: Inventory
- gNMI-1.5: Telemetry: Port Speed Test
- gNMI-1.6: System gRPC Servers running in more than one network-instance
- gNMI-1.8: Configuration Metadata-only Retrieve and Replace
- gNMI-1.9: Get requests
- gNMI-1.10: Telemetry: Basic Check
- gNMI-1.11: Telemetry: Interface Packet Counters
- gNMI-1.12: Mixed OpenConfig/CLI Origin
- gNMI-1.13: Optics Telemetry, Instant, threshold, and miscellaneous static info
- gNMI-1.14: OpenConfig metadata consistency during large config push
- gNMI-1.15: Set Requests
- gNMI-1.16: Fabric redundnacy test
- gNMI-1.17: Controller card redundancy test
- gNMI-1.18: gNMI subscribe with sample mode for backplane capacity counters
- gNMI-1.19: ConfigPush and ConfigPull after Control Card switchover
- gNMI-1.20: Telemetry: Optics Thresholds
- gNMI-1.21: Integrated Circuit Hardware Resource Utilization Test
- gNMI-1.22: Controller card port attributes
- gNMI-1.23: Telemetry: Aggregate Interface Counters
- gNMI-1.24: gNMI Leaf-List Update Test
- gNMI-1.25: Telemetry: Interface Last Change Timestamp
- gNMI-1.26: Carrier Transitions Test
- gNMI-1.27: gNMI Sample Mode Test
- GNMI-2: gnmi_subscriptionlist_test
- gNOI-2.1: Packet-based Link Qualification on 100G and 400G links
- gNOI-3.1: Complete Chassis Reboot
- gNOI-3.2: Per-Component Reboot
- gNOI-3.3: Supervisor Switchover
- gNOI-3.4: Chassis Reboot Status and Reboot Cancellation
- gNOI-4.1: Software Upgrade
- gNOI-5.1: Ping Test
- gNOI-5.2: Traceroute Test
- gNOI-5.3: Copying Debug Files
- gNOI-6.1: Factory Reset
- gNOI-7.1: BootConfig
- gNPSI-1: Sampling and Subscription Check
- HA-1.0: Telemetry: Firewall High Availability.
- Health-1.1: Generic Health Check
- Health-1.2: Healthz component status paths
- INT-1.1: Interface Performance
- IPSEC-1.1: IPSec with MACSec over aggregated links.
- IPSEC-1.2: IPSec Scaling with MACSec over aggregated links.
- IPSEC-1.3: IPSec Packet-Order with MACSec over aggregated links.
- MGT-1: Management HA solution test
- MPLS-1.1: MPLS label blocks using ISIS
- MPLS-1.2: MPLS Traffic Class Marking
- MPLS-2.2: MPLS forwarding via static LSP to BGP next-hop.
- MTU-1.3: Large IP Packet Transmission
- MTU-1.4: Large IP Packet through GRE/GUE tunnel Transmission
- MTU-1.5: Path MTU handing
- OC-1.2: Default Address Families
- OC-26.1: Network Time Protocol (NTP)
- P4RT-1.1: Base P4RT Functionality
- P4RT-1.2: P4RT Daemon Failure
- P4RT-1.3: P4RT behavior when a device/node is dowm
- P4RT-2.1: P4RT Election
- P4RT-2.2: P4RT Metadata Validation
- P4RT-3.1: Google Discovery Protocol: PacketIn
- P4RT-3.2: Google Discovery Protocol: PacketOut
- P4RT-3.21: Google Discovery Protocol: PacketOut with LAG
- P4RT-5.1: Traceroute: PacketIn
- P4RT-5.2: Traceroute Packetout
- P4RT-5.3: Traceroute: PacketIn With VRF Selection
- P4RT-6.1: Required Packet I/O rate: Performance
- P4RT-7.1: LLDP: PacketIn
- P4RT-7.2: LLDP: PacketOut
- PF-1.1: IPv4/IPv6 policy-forwarding to indirect NH matching DSCP/TC.
- PF-1.2: Policy-based traffic GRE Encapsulation to IPv4 GRE tunnel
- PF-1.3: Policy-based IPv4 GRE Decapsulation
- PF-1.4: GUEv1 Decapsulation rule using destination-address-prefix-set and TTL and DSCP behavior test
- PF-1.6: Policy based VRF selection for IPV4/IPV6
- PF-1.7: Decapsulate MPLS in GRE and UDP
- PF-1.8: Ingress handling of TTL
- PF-1.9: Egress handling of TTL
- PF-1.11: Rewrite the ingress innner packet TTL
- PF-1.12: MPLSoGRE IPV4 decapsulation of IPV4/IPV6 payload
- PF-1.13: MPLSoGRE IPV4 decapsulation of IPV4/IPV6 payload scale test
- PF-1.14: MPLSoGRE IPV4 encapsulation of IPV4/IPV6 payload
- PF-1.15: MPLSoGRE IPV4 encapsulation of IPV4/IPV6 payload scale test
- PF-1.16: MPLSoGRE IPV4 encapsulation IPV4/IPV6 local proxy test
- PF-1.17: MPLSoGRE and MPLSoGUE MACsec
- PF-1.18: MPLSoGRE and MPLSoGUE QoS
- PF-1.19: MPLSoGUE IPV4 decapsulation of IPV4/IPV6 payload
- PF-1.20: MPLSoGUE IPV4 decapsulation of IPV4/IPV6 payload scale test
- PF-1.21: Configurable IPv6 flow labels corresponding to IPV6 tunnels
- PF-1.22: GUEv1 Decapsulation and ECMP test for IPv4 and IPv6 payload
- PF-1.23: EthoCWoMPLSoGRE IPV4 forwarding of IPV4/IPV6 payload
- PF-1.24: Add and remove interface bound to PBF
- PF-1.25: Egress Static MPLS LSP Verification
- PF-2.3: Multiple VRFs and GUE DECAP in Default VRF
- PLT-1.1: Interface breakout Test
- PLT-1.2: Parent component validation test
- PLT-1.3: OnChange Subscription Test for Breakout Interfaces
- Replay-1.0: Record/replay presession test
- Replay-1.1: Record/replay diff command trees test
- Replay-1.2: P4RT Replay Test
- RT-1.1: Base BGP Session Parameters
- RT-1.2: BGP Policy & Route Installation
- RT-1.3: BGP Route Propagation
- RT-1.4: BGP Graceful Restart
- RT-1.5: BGP Prefix Limit
- RT-1.7: Local BGP Test
- RT-1.8: BGP Route Reflector Test at scale
- RT-1.10: BGP Keepalive and HoldTimer Configuration Test
- RT-1.11: BGP remove private AS
- RT-1.12: BGP always compare MED
- RT-1.14: BGP Long-Lived Graceful Restart
- RT-1.15: BGP Addpath on scale with and without routing policy
- RT-1.19: BGP 2-Byte and 4-Byte ASN support
- RT-1.21: BGP TCP MSS and PMTUD
- RT-1.23: BGP AFI SAFI OC DEFAULTS
- RT-1.24: BGP 2-Byte and 4-Byte ASN support with policy
- RT-1.25: Management network-instance default static route
- RT-1.26: Basic static route support
- RT-1.27: Static route to BGP redistribution
- RT-1.28: BGP to IS-IS redistribution
- RT-1.29: BGP chained import/export policy attachment
- RT-1.30: BGP nested import/export policy attachment
- RT-1.31: BGP 3 levels of nested import/export policy with match-set-options
- RT-1.32: BGP policy actions - MED, LocPref, prepend, flow-control
- RT-1.33: BGP Policy with prefix-set matching
- RT-1.34: BGP route-distance configuration
- RT-1.35: BGP Graceful Restart Extended route retention (ExRR)
- RT-1.51: BGP multipath ECMP
- RT-1.52: BGP multipath UCMP support with Link Bandwidth Community
- RT-1.53: prefix-list test
- RT-1.54: BGP Override AS-path split-horizon
- RT-1.55: BGP session mode (active/passive)
- RT-1.63: BGP Multihop
- RT-1.64: BGP Import/Export Policy (Control plane only) Functional Test Case
- RT-1.65: BGP scale test
- RT-1.66: IPv4 Static Route with IPv6 Next-Hop
- RT-2.1: Base IS-IS Process and Adjacencies
- RT-2.2: IS-IS LSP Updates
- RT-2.6: IS-IS Hello-Padding enabled at interface level
- RT-2.7: IS-IS Passive is enabled at interface level
- RT-2.8: IS-IS metric style wide not enabled
- RT-2.9: IS-IS metric style wide enabled
- RT-2.10: IS-IS change LSP lifetime
- RT-2.11: IS-IS Passive is enabled at the area level
- RT-2.12: Static route to IS-IS redistribution
- RT-2.13: Weighted-ECMP for IS-IS
- RT-2.14: IS-IS Drain Test
- RT-2.15: IS-IS Extensions for Segment Routing
- RT-2.16: IS-IS Graceful Restart Helper
- RT-3.1: Policy based VRF selection
- RT-3.2: Multiple <Protocol, DSCP> Rules for VRF Selection
- RT-3.52: Multidimensional test for Static GUE Encap/Decap based on BGP path selection and selective DSCP marking
- RT-3.53: Static route based GUE Encapsulation to IPv6 tunnel
- RT-4.10: AFTs Route Summary
- RT-4.11: AFTs Route Summary
- RT-5.1: Singleton Interface
- RT-5.2: Aggregate Interfaces
- RT-5.3: Aggregate Balancing
- RT-5.4: Aggregate Forwarding Viable
- RT-5.5: Interface hold-time
- RT-5.6: Interface Loopback mode
- RT-5.7: Aggregate Not Viable All
- RT-5.8: IPv6 Link Local
- RT-5.9: Disable IPv6 ND Router Arvetisment
- RT-5.10: IPv6 Link Local generated by SLAAC
- RT-5.11: LACP Intervals
- RT-5.12: Suppress IPv6 ND Router Advertisement [Depreciated]
- RT-5.13: Flow control test
- RT-6.1: Core LLDP TLV Population
- RT-7.1: BGP default policies
- RT-7.2: BGP Policy Community Set
- RT-7.3: BGP Policy AS Path Set
- RT-7.4: BGP Policy AS Path Set and Community Set
- RT-7.5: BGP Policy - Match and Set Link Bandwidth Community
- RT-7.6: BGP Link Bandwidth Community - Cumulative
- RT-7.8: BGP Policy Match Standard Community and Add Community Import/Export Policy
- RT-7.9: BGP ECMP for iBGP with IS-IS protocol nexthop
- RT-7.10: Routing policy statement insertion and removal
- RT-7.11: BGP Policy - Import/Export Policy Action Using Multiple Criteria
- RT-7.51: BGP Auto-Generated Link-Bandwidth Community
- RT-8: Singleton with breakouts
- RT-10.1: Default Route Generation based on 192.0.0.0/8 Presence
- RT-10.2: Non-default Route Generation based on 192.168.2.2/32 Presence in ISIS
- RT-14.2: GRIBI Route Test
- SEC-3.1: Authentication
- SFLOW-1: sFlow Configuration and Sampling
- SR-1.1: Transit forwarding to Node-SID via ISIS
- SR-1.2: Egress Node Forwarding for MPLS traffic with Explicit Null label
- Storage-1.1: Storage File System Check
- SYS-1.1: Test default COPP policy thresholds for Arista
- SYS-2.1: Ingress control-plane ACL.
- SYS-3.1: AAA and TACACS+ Configuration Verification Test Suite
- SYS-4.1: System Mount Points State Verification
- System-1.1: System banner test
- System-1.2: System g protocol test
- System-1.3: System hostname test
- System-1.4: System time test
- System-1.5: System software-version test
- TE-1.1: Static ARP
- TE-1.2: My Station MAC
- TE-2.1: gRIBI IPv4 Entry
- TE-2.2: gRIBI IPv4 Entry With Aggregate Ports
- TE-3.1: Base Hierarchical Route Installation
- TE-3.2: Traffic Balancing According to Weights
- TE-3.3: Hierarchical weight resolution
- TE-3.5: Ordering: ACK Received
- TE-3.6: ACK in the Presence of Other Routes
- TE-3.7: Base Hierarchical NHG Update
- TE-3.31: Hierarchical weight resolution with PBF
- TE-4.1: Base Leader Election
- TE-4.2: Persistence Mode
- TE-5.1: gRIBI Get RPC
- TE-6.1: Route Removal via Flush
- TE-6.2: Route Removal In Non Default VRF
- TE-6.3: Route Leakage between Non Default VRF
- TE-8.1: DUT Daemon Failure
- TE-8.2: Supervisor Failure
- TE-9.3: FIB FAILURE DUE TO HARDWARE RESOURCE EXHAUST
- TE-9: gRIBI MPLS Compliance
- TE-10: gRIBI MPLS Forwarding
- TE-11.1: Backup NHG: Single NH
- TE-11.2: Backup NHG: Multiple NH
- TE-11.3: Backup NHG: Actions
- TE-11.21: Backup NHG: Multiple NH with PBF
- TE-11.31: Backup NHG: Actions with PBF
- TE-13.1: gRIBI route ADD during Failover
- TE-13.2: gRIBI route DELETE during Failover
- TE-14.1: gRIBI Scaling
- TE-14.2: encap and decap scale
- TE-15.1: gRIBI Compliance
- TE-16.1: basic encapsulation tests
- TE-16.2: encapsulation FRR scenarios
- TE-16.3: encapsulation FRR scenarios
- TE-17.1: VRF selection policy driven TE
- TE-18.1: gRIBI MPLS-in-UDP Encapsulation
- TE-18.3: MPLS in UDP Encapsulation Scale Test
- TE-18.4: ECMP hashing on outer and inner packets with MPLSoUDP encapsulation
- TestID-16.4: gRIBI to BGP Route Redistribution for IPv4
- TR-6.1: Remote Syslog feature config
- TR-6.2: Local logging destinations
- TRANSCEIVER-1.1: Telemetry: 400ZR Chromatic Dispersion(CD) telemetry values streaming
- TRANSCEIVER-1.2: Telemetry: 400ZR_PLUS Chromatic Dispersion(CD) telemetry values streaming
- TRANSCEIVER-3.1: Telemetry: 400ZR Optics firmware version streaming
- TRANSCEIVER-3.2: Telemetry: 400ZR_PLUS Optics firmware version streaming
- TRANSCEIVER-4.1: Telemetry: 400ZR RX input and TX output power telemetry values streaming.
- TRANSCEIVER-4.2: Telemetry: 400ZR_PLUS RX input and TX output power telemetry values streaming.
- TRANSCEIVER-5.1: Configuration: 400ZR channel frequency, output TX launch power and operational mode setting.
- TRANSCEIVER-5.2: Configuration: 400ZR_PLUS channel frequency, output TX launch power and operational mode setting.
- TRANSCEIVER-6.1: Telemetry: 400ZR Optics performance metrics (pm) streaming.
- TRANSCEIVER-6.2: Telemetry: 400ZR_PLUS Optics performance metrics (pm) streaming.
- TRANSCEIVER-7.1: Telemetry: 400ZR Optics inventory info streaming
- TRANSCEIVER-7.2: Telemetry: 400ZR_PLUS Optics inventory info streaming
- TRANSCEIVER-8.1: Telemetry: 400ZR Optics module temperature streaming.
- TRANSCEIVER-8.2: Telemetry: 400ZR_PLUS Optics module temperature streaming.
- TRANSCEIVER-9.1: Telemetry: 400ZR TX laser bias current telemetry values streaming.
- TRANSCEIVER-9.2: Telemetry: 400ZR_PLUS TX laser bias current telemetry values streaming.
- TRANSCEIVER-10.1: Telemetry: 400ZR Optics FEC(Forward Error Correction) Uncorrectable Frames Streaming.
- TRANSCEIVER-10.2: Telemetry: 400ZR_PLUS Optics FEC(Forward Error Correction) Uncorrectable Frames Streaming.
- TRANSCEIVER-11.1: Telemetry: 400ZR Optics logical channels provisioning and related telemetry.
- TRANSCEIVER-11.2: Telemetry: 400ZR_PLUS Optics logical channels provisioning and related telemetry.
- TRANSCEIVER-12.1: Telemetry: 400ZR Transceiver Supply Voltage streaming.
- TRANSCEIVER-12.2: Telemetry: 400ZR_PLUS Transceiver Supply Voltage streaming.
- TRANSCEIVER-13.1: Configuration: 400ZR Transceiver Low Power Mode Setting.
- TRANSCEIVER-13.2: Configuration: 400ZR_PLUS Transceiver Low Power Mode Setting.
- TRANSCEIVER-101: Telemetry: ZR platform OC paths streaming.
- TRANSCEIVER-102: Telemetry: ZR terminal-device OC paths streaming.
- TRANSCEIVER-103: Telemetry: ZR Plus platform OC paths streaming.
- TRANSCEIVER-104: Telemetry: ZR Plus terminal-device OC paths streaming.
- TRANSCEIVER-105: Telemetry: ZR platform OC paths streaming.
- TRANSCEIVER-106: Telemetry: ZR terminal-device OC paths streaming.
- TRANSCEIVER-107: Telemetry: ZR Plus platform OC paths streaming.
- TRANSCEIVER-108: Telemetry: ZR Plus terminal-device OC paths streaming.
- TUN-1.3: Interface based IPv4 GRE Encapsulation
- TUN-1.4: Interface based IPv6 GRE Encapsulation
- TUN-1.6: Tunnel End Point Resize for Ecapsulation - Interface Based GRE Tunnel
- TUN-1.9: GRE inner packet DSCP
- URPF-1.1: uRPF validation from non-default network-instance
- Test Plans